BIOAUGMENTATION OF CORN STALKS FERMENTATION BY ANAEROBIC BENZOATE-DEGRADING BACTERIUM SPOROTOMACULUM SYNTROPHICUM
-
摘要: 木质素的有效降解是提高秸秆等木质纤维素原料沼气发酵效率的有效途径。木质素很难被厌氧微生物分解利用,然而有研究表明木质素可以经由苯甲酸、苯酚等芳香族化合物被微生物分解利用。采用批次试验探究厌氧苯甲酸降解菌Sporotomaculum syntrophicum FB对秸秆沼气发酵的影响。强化菌株S.syntrophicum接种比例的结果表明,接种比例为5%、10%和20%时,甲烷产量分别为252.2,244.9,234.8 mL/g TS,比对照组提高了20.5%、17.0%和12.2%,TS去除率提高了2.9%、3.1%和3.4%。投加5%~20% S.syntrophicum后的玉米秸秆中纤维素、半纤维素、木质素的去除率,比对照组提高了12%~13%,3%~5%和38%~46%。进一步试验结果显示,添加S.syntrophicum使甲基纤维素、木聚糖和碱木质素(纤维素、半纤维素和木质素的模式物)的甲烷产量分别提高了15.7%、11.4%和7.8%。
-
关键词:
- 生物强化 /
- 玉米秸秆 /
- 沼气发酵 /
- 木质素 /
- Sporotomaculum syntrophicum
Abstract: The degradation of lignin is an effective way to improve the biogas fermentation efficiency of lignocellulosic materials, such as straw. For anaerobic microorganisms, lignin is difficult to use, however, recent studies indicated that lignin can be decomposed and utilized by microorganisms through aromatic compounds such as benzoate and phenol. The effect of bioaugmentation with a benzoate-degrading bacterium Sporotomaculum syntrophicum strain FB on the anaerobic corn stalk fermentation was evaluated by batch experiments. The results showed that when the inoculation ratio of S. syntrophicum was 5%, 10%, and 20%, the methane yields were 252.2, 244.9, 234.8 mL/g TS respectively, increased by 20.5%, 17.0%, 12.2% comparing with the control. TS removal rates increased by 2.9%, 3.1%, and 3.4%, respectively. The removal rates of cellulose, hemicellulose and lignin increased by 12%~13%, 3%~5% and 38%~46%, respectively, with the addition of 5%~20% S. syntrophicum. The further experiment verified that the addition of S. syntrophicum could improve the methane yields of methyl cellulose, xylan, and alkali lignin(models for cellulose, hemicelluloses, and lignin, respectively) by 15.7%, 11.4%, 7.8%.-
Key words:
- bioaugmentation /
- corn stalk /
- anaerobic fermentation /
- lignin /
- Sporotomaculum syntrophicum
-
[1] VELUCHAMY C,KALAMDHAD A S.Influence of pretreatment techniques on anaerobic digestion of pulp and paper mill sludge:a review[J].Bioresource Technology,2017,245:1206-1219. [2] BUGG T D H,AHMAD M,HARDIMAN E M,et al.The emerging role for bacteria in lignin degradation and bio-product formation[J].Current Opinion in Biotechnology,2011,22(3):394-400. [3] GLISSMANN K,HAMMER E,CONRAD R.Production of aromatic compounds during methanogenic degradation of straw in rice field soil[J].FEMS Microbiology Ecology,2005,52(1):43-48. [4] HECHT C,BIELER,GRIEHL C.Liquid chromatographic-mass spectrometric-analyses of anaerobe protein degradation products[J].Journal of Chromatography A,2005,1088(1/2):121-125. [5] QIAO J T,QIU Y L,YUAN X Z,et al.Molecular characterization of bacterial and archaeal communities in a full-scale anaerobic reactor treating corn straw[J].Bioresource Technology,2013,143:512-518. [6] 谢彤彤,孙晓娇,吴凯旋,等.酱酒丢糟沼气发酵特性及微生物群落特征[J].应用与环境生物学报,2021,27(5):1311-1317. [7] FANTROUSSI S E,AGATHOS S N.Is bioaugmentation a feasible strategy for pollutant removal and site remediation?[J].Current Opinion in Microbiology,2005,8(3):268-275. [8] LEVEN L,NYBERG K,SCHNURER A.Conversion of phenols during anaerobic digestion of organic solid waste:a review of important microorganisms and impact of temperature[J].Journal of Environmental Management,2012,95:S99-S103. [9] QIU Y L,HANADA S,OHASHI A,et al.Syntrophorhabdus aromaticivorans gen.nov.,sp.nov.,the first cultured anaerobe capable of degrading phenol to acetate in obligate syntrophic associations with a hydrogenotrophic methanogen[J].Applied and Environmental Microbiology,2008,74(7):2051-2058. [10] QIU Y L,SEKIGUCHI Y,IMACHI H,et al.Sporotomaculum syntrophicum sp.nov.,a novel anaerobic,syntrophic benzoate-degrading bacterium isolated from methanogenic sludge treating wastewater from terephthalate manufacturing[J].Archives of Microbiology,2003,179(4):242-249. [11] SEKIGUCHI Y,KAMAGATA Y,NAKAMURA K,et al.Syntrophothermus lipocalidus gen.nov.,sp.nov.,a novel thermophilic,syntrophic,fatty-acid-oxidizing anaerobe which utilizes isobutyrate[J].International Journal of Systematic and Evolutionary Microbiology,2000,50(2):771-779. [12] CLESCERL L S,GREENBERG A E,EATON A D.Standard methods for examination of water and wastewater (20th Edition)[M].Washington DC:American Public Health Association,1999. [13] VAN SOEST P J,ROBERTSON J B,LEWIS B A.Methods for dietary fiber,neutral detergent fiber,and nonstarch polysaccharides in relation to animal nutrition[J].Journal of Dairy Science,1991,74(10):3583-3597. [14] 李倩,许之扬,阮文权.黄孢原毛平革菌后处理深度提升醋糟产甲烷潜力[J].浙江农业学报,2020,32(5):904-911. [15] AKILA G,CHANDRA T S.Stimulation of biomethanation by Clostridium sp.PXYL1 in coculture with a Methanosarcina strain PMET1 at psychrophilic temperatures[J].Journal of Applied Microbiology,2010,108(1):204-213. [16] 王芳,刘晓飞,刘晓风,等.产氢菌对沼气发酵的生物强化作用[J].应用与环境生物学报,2013,19(2):351-355. [17] KO J J,SHIMIZU Y,IKEDA K,et al.Biodegradation of high molecular weight lignin under sulfate reducing conditions:lignin degradability and degradation by-products[J].Bioresource Technology,2009,100(4):1622-1627. [18] FRIGON J C,GUIOT S R.Biomethane production from starch and lignocellulosic crops:a comparative review[J].Biofuels,Bioproducts and Biorefining,2010,4(4):447-458. [19] BARAKAT A,MONLAU F,Steyer J P,et al.Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethane production[J].Bioresource Technology,2012,104:90-99. [20] WU Z J,DONG H J,ZOU L D,et al.Enriched microbial community in bioaugmentation of petroleum-contaminated soil in the presence of wheat straw[J].Applied Biochemistry and Biotechnology,2011,164(7):1071-1082.
点击查看大图
计量
- 文章访问数: 121
- HTML全文浏览量: 13
- PDF下载量: 8
- 被引次数: 0