EFFECTS OF ALKALI TREATMENT ON METHANE AND INTERMEDIATE AMINO ACIDS AND THEIR CORRELATION DURING ANAEROBIC DIGESTION OF WASTE ACTIVATED SLUDGE
-
摘要: 以剩余污泥为底物,研究了碱处理pH对污泥有机物溶出,水解产生的氨基酸种类和构型以及厌氧消化产甲烷的影响。分别采用2种动力学模型对产甲烷过程进行拟合,并利用Spearman分析考察了氨基酸与产甲烷之间相关性。结果显示:碱处理pH为11时COD溶出率最大,最终累积产甲烷量较空白组提高了1.4倍。改进Gompertz模型对产甲烷过程拟合效果较好,拟合系数均在0.989以上,误差范围在3.9%以内。碱处理可提高水解产物氨基酸含量和种类,溶出的氨基酸同时具有L型和D型,其中L、D-Cys含量最高。L型氨基酸含量高于其对映体(Thr除外),Thr的外消旋化程度(D/(D+L))最高(54.0%),其次为Cys (45.5%)和Ala (44.0%)。氨基酸中D-Leu、D-Asp、L-Thr和L-Cys含量与甲烷产量之间有较强的相关性,其Spearman系数分别为0.894、0.9、0.9和0.9(P<0.05)。这为后续研究氨基酸及其构型对厌氧消化产甲烷的影响提供理论参考,为调控厌氧消化提供新的思路。
-
关键词:
- 碱处理 /
- 剩余污泥 /
- 氨基酸对映体 /
- 产甲烷动力学模型 /
- Spearman相关性
Abstract: The effects of alkali treatment pH on the dissolution of organic matter, the types and configuration of amino acids produced by proteolysis and methane production by anaerobic digestion of waste activated sludge were studied. Two kinetic models were used to fit the methanogenesis process, and Spearman analysis was used to investigate the correlation between intermediate amino acids and methane production. The results showed that, when alkali treatment pH was 11, the cumulative methane production was 1.4 times higher than that of the control group. The modified Gompertz model had a good fitting effect on the methanogenesis process, the fitting coefficient was above 0.989, and the error range was within 3.9%. Alkali treatment could increase the content and types of amino acids by proteolysis. The dissolved amino acids have L-type and D-type, with the highest content of L-and D-Cys. The content of L-type was higher than its corresponding D-type(except Thr), in which the racemization degree(D/(D+L)) of Thr was the highest(54.0%), followed by Cys(45.5%) and Ala(44.0%). Among amino acids, D-Leu, D-Asp, L-Thr and L-Cys had a strong correlation with methane production, and their Spearman coefficients were 0.894, 0.9, 0.9 and 0.9(P<0.05), respectively. This study provides a theoretical basis for the follow-up study on the effects of amino acids and their configurations on anaerobic digestion and as well as a new idea for the regulation of anaerobic digestion. -
[1] 覃思宇,王丹丹.关于我国城镇污水处理厂污泥处理处置的现状分析[J].化工管理,2020(15):49-50. [2] 戴晓虎,李小伟,杨婉,等.污水处理厂污泥中病毒的赋存特性及处理处置过程中暴露风险防控研究进展[J].给水排水,2020,56(3):60-73. [3] 杨世东,陈霞,刘操,等.热碱处理对污水处理厂污泥特性的影响研究[J].环境科学,2015,36(2):619-624. [4] KOYAMA M,WATANABE K,KUROSAWA N,et al.Effect of alkaline pretreatment on mesophilic and thermophilic anaerobic digestion of a submerged macrophyte:inhibition and recovery against dissolved lignin during semi-continuous operation[J].Bioresource Technology,2017,238:666-674. [5] 黄小英,黄涛,彭道平,等.厌氧消化产气预测模型研究进展[J].四川环境,2018,37(2):161-166. [6] 刘双,郭文政,苏志伟,等.不同农作物秸秆厌氧消化的产甲烷潜力[J].贵州农业科学,2020,48(11):105-109. [7] 解昊,盛维杰,廖勇,等.基于污泥破解的蛋白质回收工艺研究进展[J].应用化工,2021,50(2):438-443. [8] SARA B,HERNÁNDEZ,CAVA F.Environmental roles of microbial amino acid racemases[J].Environmental Microbiology,2016,18(6):1673-1685. [9] VRANOVA V,ZAHRADNICKOVA H,JANOUS D,et al.The significance of d-amino acids in soil,fate and utilization by microbes and plants:review and identification of knowledge gaps[J].Plant Soil,2012,354:21-39. [10] A.OREM C,S.KAUFMAN D.Effects of basic pH on amino acid racemization and leaching in freshwater mollusk shell[J].Quaternary Geochronology,2011,6(2):233-245. [11] CHATTOPADHYAY A,KELKAR D.Ion channels and d-amino acids[J].Journal of Biosciences,2005,32(2):147-149. [12] 李娜.不同预处理方法对污泥脱水中氨基酸种类和含量的影响规律及机理研究[D].武汉:华中科技大学,2019. [13] ZHUANG L,MA J,TANG J L,et al.Cysteine-accelerated methanogenic propionate degradation in paddy soil enrichment[J].Microbial Ecology,2017,73(4):916-924. [14] SHARMA P,MELKANIA U.Enhancement effect of amino acids on hydrogen production from organic fraction of municipal solid waste using co-culture of Escherichia coli and Enterobacter aerogenes[J].Energy Conversion and Management,2018,163:260-267. [15] KOLODKIN-Gal I,ROMERO D,CAO S.D-Amino acids trigger biofilm disassembly[J].Science,2010,328(5978):627-629. [16] WANG Y F,SUN X F,XIA P F,et al.Influences of d-tyrosine on the stability of activated sludge flocs[J].Bioresource Technology,2014,154:26-31. [17] 国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002. [18] LIU X R,XU Q X,WANG D B,et al.Unveiling the mechanisms of how cationic polyacrylamide affects short-chain fatty acids accumulation during long-term anaerobic fermentation of waste activated sludge[J].Water Research,2019,155:142-151. [19] 戴金金,牛承鑫,潘阳,等.基于厌氧膜生物反应器的剩余污泥-餐厨垃圾厌氧共消化性能[J].环境科学,2020,41(8):3740-3747. [20] 何红波,张威,解宏图,等.测定土壤氨基糖和氨基酸手性异构体中氮同位素比值的气相色谱/质谱方法[J].土壤学报,2009,46(2):289-298. [21] ZOU X M,YAN R J,ZHOU X,et al.Effects of mixed alkali-thermal pretreatment on anaerobic digestion performance of waste activated sludge[J].Journal of Cleaner Production,2020,259(20):120940. [22] 蒋昌旺,李靖,何迪,等.热碱预处理对高含固剩余污泥厌氧消化的影响及其动力学研究[J].环境污染与防治,2019,41(8):906-909,915. [23] 李震,阮大年.碱预处理工艺强化脱水污泥厌氧消化[J].净水技术,2020,39(7):145-150. [24] 刘晓玲.城市污泥厌氧发酵产酸条件优化及其机理研究[D].无锡:江南大学,2008. [25] 黄宇钊,冼萍,李桃,等.热-碱联合处理改善污泥厌氧消化性能的研究[J].广西大学学报(自然科学版),2019,44(5):1392-1398. [26] ZHANG J,TIAN Y,CUI Y N,et al.Key intermediates in nitrogen transformation during microwave pyrolysis of sewage sludge:a protein model compound study[J].Bioresource Technology,2013,132:57-63. [27] LIARDON R,HURRELL R F.Amino acid racemization in heated and alkali-treated proteins[J].Journal of Agriculture Food Chemistry,1983,31:432-437. [28] CONRAD U,FAHR A,SCRIBA GKE.Kinetics of aspartic acid isomerization and enantiomerization in model aspartyl tripeptides under forced conditions[J].Journal of Pharmaceutical Sciences,2010,99(10):4162-4173. [29] PRANDIA B,FACCINIC A,LAMBERTINIA F,et al.Food wastes from agrifood industry as possible sources of proteins:a detailed molecular view on the composition of the nitrogen fraction,amino acid profile and racemisation degree of 39 food waste streams[J].Food Chemistry,2019,286:567-575. [30] 李慧琳.蛋白质中氨基酸外消旋化的研究现状[J].化工管理,2018(1):91-92. [31] LIU H,CHEN Y G,YE J F,et al.Effects of different amino acids and their configurations on methane yield and biotransformation of intermediate metabolites during anaerobic digestion[J].Journal of Environmental Management,2021,296:113152. [32] GUO W Q,DING J,CAO G L,et al.Accelerated startup of hydrogen production expanded granular sludge bed with l-Cysteine supplementation[J].Energy,2013,60:94-98. [33] ERNEST M,MIHOLITS,JOSEPH F.Effects of amino acids on anaerobic digestion[J].Water Pollution Control Federation,1968,40(2):R42-R53. [34] TCHONG S I,XU H,WHITE R H.L-cysteine desulfidase:an[4Fe-4S] enzyme isolated from Methanocaldococcus jannaschii that catalyzes the breakdown of L-cysteine into pyruvate,ammonia,and sulfide[J].Biochemistry,2005,44(5):1659-1670. [35] 麻微微,马放,岳秀丽,等.嗜冷产甲烷菌及其冷适应机制的研究进展[J].中国沼气,2015,33(2):3-7.
点击查看大图
计量
- 文章访问数: 174
- HTML全文浏览量: 32
- PDF下载量: 5
- 被引次数: 0