CHARACTERIZATION OF RHIZOSPHERE ENVIRONMENT OF LEERSIA HEXANDRA SWARTZ UNDER CONTAMINATION OF Ni AND Cr
-
摘要: 为了将李氏禾应用于Ni、Cr复合污染土壤修复领域,通过根箱实验,研究了Ni、Cr复合污染下李氏禾根际环境特征的变化。结果表明:在不同浓度的Ni、Cr处理下,李氏禾根际土壤的pH值均显著低于(P<0.01)非根际土壤与基质土壤,根际土壤的脲酶、酸性磷酸酶、酸性转化酶活性均显著高于(P<0.05)非根际土壤与基质土壤。随着Ni、Cr处理浓度升高,李氏禾的pH值、土壤酶活性均呈不同程度的下降,李氏禾的株高、生物量及富集系数也受到抑制。在相关性分析中,李氏禾的株高和生物量与土壤pH值、土壤酶活性呈显著正相关(P<0.01),土壤pH值与土壤酶活性同样呈显著正相关(P<0.01)。高通量测序结果表明:李氏禾根际土壤相对丰度最高的3种菌群为变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidetes);相对丰度最高的3种菌属依次为Alicyclobacillus属、Bordetella属和Mucilaginibacter属;Hydrotalea属对李氏禾的生长及富集能力可能具有促进作用。李氏禾可耐受较高水平的Ni、Cr污染,其根际可能存在金属抗性细菌,是一种潜在的可用于Ni、Cr复合污染土壤修复的植物。Abstract: To apply Leersia Hexandra Swartz to remediate Ni and Cr complex contaminated soil, root box experiments were used to investigate the changes in the rhizosphere environmental characteristics of Leersia Hexandra Swartz under Ni and Cr composite contamination. The results showed that:the pH of the rhizosphere soil of Leersia Hexandra Swartz was significantly lower(P<0.01) than that of the non-rhizosphere soil and the substrate soil under different concentrations of Ni and Cr; athe urease, acid phosphatase, and acid convertase activities of the inter-rhizosphere soil were significantly higher(P<0.05) than that of the non-rhizosphere soil and the substrate soil. As the concentration of Ni and Cr treatment increased, the pH and soil enzyme activity of Leersia Hexandra Swartz showed different degrees of decrease, and the plant height, biomass, and enrichment coefficient of Leersia Hexandra Swartz were also inhibited. In the correlation analysis, plant height and biomass of Leersia hexandra Swartz showed a significant positive correlation(P<0.01) with soil pH and soil enzyme activity, and soil pH showed the same significant positive correlation(P<0.01) with soil enzyme activity. High-throughput sequencing results showed that the three groups of bacteria with the highest relative abundance in the rhizosphere soil of Leersia Hexandra Swartz were Proteobacteria, Firmicutes and Bacteroidetes; the three genera with the highest relative abundance were Alicyclobacillus, Bordetella and Mucilaginibacter; Hydrotalea may have a facilitating effect on the growth and enrichment capacity of Leersia Hexandra Swartz. The results showed that Leersia Hexandra Swartz could tolerate higher levels of Ni and Cr contamination and that metal-resistant bacteria may be present in its inter-roots, making it a potential plant that can be used for remediation of Ni and Cr complex contaminated soils.
-
[1] GRAVAND F,RAHNAVARD A,POUR G M.Investigation of vetiver grass capability in phytoremediation of contaminated soils with heavy metals (Pb,Cd,Mn and Ni)[J].Soil and Sediment Contamination,2021,30(2):163-186. [2] 王丙烁,黄益宗,王农,等.镍污染土壤修复技术研究进展[J].农业环境科学学报,2018,37(11):2392-2402. [3] 陈世宝,王萌,李杉杉,等.中国农田土壤重金属污染防治现状与问题思考[J].地学前缘,2019,26(6):35-41. [4] 李佩,杨文浩,周碧青,等.东南景天修复Pb、Zn、Cd复合污染土壤中根际微域微生物的响应特性[J].福建农林大学学报(自然科学版),2019,48(6):788-795. [5] SIVAR R,ARDEJANI DF,FARAHBAKHSH M,et al.potential of vetiver grass for the phytoremediation of real multi-contaminated soil,assisted by electrokinetic[J].Chemosphere,2020,246:125802. [6] OJOAWO S O G,UDAVAKUMAR P,NAIK.phytoremediation of phosphorus and Nitrogen with Canna x generalis Reeds in Domestic Wastewater through NMAMIT Constructed Wetland[J].Aquatic procedia,2015,4:349-356. [7] REEVES R D,BAKER A,JAFFRE T,et al.A global database for plants that hyperaccumulate metal and metalloid trace elements[J].New Phytologist,2017,218(2):407-411. [8] 张学洪,罗亚平,黄海涛,等.一种新发现的湿生铬超积累植物:李氏禾(Leersia hexandra Swartz)[J].生态学报,2006,26(3):950-953. [9] 陶笈汛,张学洪,罗昊,等.李氏禾对电镀污泥污染土壤中铬铜镍的吸收和积累[J].桂林理工大学学报,2010,30(1):144-147. [10] HOU D D,WANG K,LIU T,et al.Unique rhizosphere micro-characteristics facilitate phytoextraction of multiple metals in soil by the hyperaccumulating plant Sedum alfredii[J].Environmental Science& Technology,2017,51:5675-5684. [11] 黄界颍,徐晓春,陈莉薇,等.改良剂对尾砂盆栽蔬菜重金属吸收及基质理化性质的影响:以铜陵金属矿区为例[J].湖南农业科学,2012(21):66-68,72. [12] 杨阳,刘秉儒.荒漠草原不同植物根际与非根际土壤养分及微生物量分布特征[J].生态学报,2015,35(22):7562-7570. [13] 张存款,林华,满向甜,等.氮肥形态对李氏禾富集铜的影响及生理响应[J].生态环境学报,2017,26(9):1599-1604. [14] OKEM A,SOUTHWAY C,STIRK W A,et al.Effect of cadmium and aluminum on growth,metabolite content and biological activity in Drimia elata(Jacq.) Hyacinthaceae[J].South African Journal of Botany,2015,98:142-147. [15] 刘昭君,林华,王义安,等.磷肥种类对李氏禾富集铜、铬的影响及其生理响应[J].生态环境学报,2021,30(2):412-419. [16] LI J R,XU Y M.Immobilization of Cd in paddy soil using moisture management and amendment[J].Environmental Science and Pollution Research International,2015,22(7):5580-5586. [17] 刘沙沙,付建平,蔡信德,等.重金属污染对土壤微生物生态特征的影响研究进展[J].生态环境学报,2018,27(6):1173-1178. [18] MUEHE E,MARIE,WEIGOLD,et al.Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri[J].Applied and Environmental Microbiology,2015,81(6):2173-2181. [19] 周武,袁志辉,刘敏超.重金属Cr (Ⅵ)和Ni对旱伞草富集能力及其生理生化指标的影响[J].环境工程学报,2015,9(1):171-176. [20] 赵斌,朱四喜,徐铖.铬胁迫对美人蕉生理生态特性与铬积累的影响[J].科学技术与工程,2017,17(32):44-49. [21] 常国华,岳斌,李万江,等.铬(Ⅵ)胁迫下碧玉的生理响应[J].甘肃高师学报,2016,21(12):23-28. [22] 陆红飞,乔冬梅,齐学斌,等.外源有机酸对土壤pH值、酶活性和Cd迁移转化的影响[J].农业环境科学学报,2020,39(3):542-553. [23] 王佩瑶,张璇,袁文娟,等.土壤微生物多样性及其影响因素[J].绿色科技,2021,23(8):163-164,167. [24] 邓玉兰,徐小逊,张世熔,等.不同镉浓度下绿穗苋根际环境特征与镉形态分布[J].农业环境科学学报,2016,35(2):288-293. [25] HU X F,JIANG Y,SHU Y,et al.Effects of mining wastewater discharges on heavy metal pollution and soil enzyme activity of the paddy fields[J].Journal of Geochemical Exploration,2014,147(Part B):139-150. [26] TAYEBY B,AHANGAR A G.The influence of heavy metals on the development and activity of soil microorganisms[J].International Journal of plant,Animal and Environmental Sciences,2014,4:74-85. [27] 毛迎新,黄丹娟,王红娟,等.不同施肥模式对茶园土壤细菌多样性的影响[J].湖北农业科学,2019,58(22):65-70. [28] 顾松松,胡秋龙,刘仲华,等.不同类型茶园土壤细菌多样性及群落结构研究[J].茶叶通讯,2019,46(2):162-169. [29] 陈任连,蔡茜茜,周丽华,等.甘肃某冶炼厂区土壤重金属铅、镉污染特征及其对微生物群落结构的影响[J].生态环境学报,2021,30(3):596-603. [30] AZARBAD H,NIKLINSKA M,LASKOWSKI R,et al.Microbial community composition and functions are resilient to metal pollution along two forest soil gradients[J].Ferns Microbiology Ecology,2015,91(1):1-11. [31] 孟春瑜,刘文彦,刘兴宇,等.Alicyclobacillus属细菌及其在生物冶金中的研究进展[J].矿冶,2015,24(4):43-48,59. [32] 杨楠.紫金矿区重金属耐性菌株Mucilaginibacter rubeus P3的分离、鉴定、基因组分析及其应用研究[D].福州:福建农林大学,2019. [33] 李亚丽.禾草灵对水稻根际菌群结构及系统获得性抗性的影响[D].杭州:浙江工业大学,2015. [34] KENAROVA A,RADEVA G,TRAYKOV I,et al.Community level physiological profiles of bacterial communities inhabiting uranium mining impacted sites[J].Ecotoxicology and Environmental Safety,2014,100:226-232. [35] ZHANG C,NIE S,LIANG J,et al.Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure[J].Science of the Total Environment,2016,557/558:785-790.
点击查看大图
计量
- 文章访问数: 152
- HTML全文浏览量: 21
- PDF下载量: 1
- 被引次数: 0