中文核心期刊
CSCD来源期刊(核心库)
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氯代吡啶类污染物吸附与转化技术研究进展及挑战

孙素云 李宝磊 孔德勇 侯雅男 马金凤 郭建博 宋圆圆

孙素云, 李宝磊, 孔德勇, 侯雅男, 马金凤, 郭建博, 宋圆圆. 氯代吡啶类污染物吸附与转化技术研究进展及挑战[J]. 环境工程, 2022, 40(5): 227-236. doi: 10.13205/j.hjgc.202205032
引用本文: 孙素云, 李宝磊, 孔德勇, 侯雅男, 马金凤, 郭建博, 宋圆圆. 氯代吡啶类污染物吸附与转化技术研究进展及挑战[J]. 环境工程, 2022, 40(5): 227-236. doi: 10.13205/j.hjgc.202205032
SUN Su-yun, LI Bao-lei, KONG De-yong, HOU Ya-nan, MA Jin-feng, GUO Jian-bo, SONG Yuan-yuan. ADSORPTION AND TRANSFORMATION OF CHLOROPYRIDINE: RESEARCH ADVANCES AND CHALLENGES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 227-236. doi: 10.13205/j.hjgc.202205032
Citation: SUN Su-yun, LI Bao-lei, KONG De-yong, HOU Ya-nan, MA Jin-feng, GUO Jian-bo, SONG Yuan-yuan. ADSORPTION AND TRANSFORMATION OF CHLOROPYRIDINE: RESEARCH ADVANCES AND CHALLENGES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 227-236. doi: 10.13205/j.hjgc.202205032

氯代吡啶类污染物吸附与转化技术研究进展及挑战

doi: 10.13205/j.hjgc.202205032
基金项目: 

天津市自然科学基金(19JCQNJC07800)

国家自然科学基金(52000134)

天津市合成生物技术创新能力提升行动(TSBICIP-CXRC-007)

博士后面上项目(2020M680894)

详细信息
    作者简介:

    孙素云(1996-),女,硕士研究生,主要研究方向为废水深度处理与资源化。sunsy@tib.cas.cn

    通讯作者:

    侯雅男(1989-),女,博士,讲师,主要研究方向为废水深度处理与资源化。houyn123@163.com

ADSORPTION AND TRANSFORMATION OF CHLOROPYRIDINE: RESEARCH ADVANCES AND CHALLENGES

  • 摘要: 氯代吡啶类除草剂的大量生产及在农业生产和生活中的广泛应用,使其在废水、饮用水等环境中被不断检出,对生态环境和人类健康造成潜在危害。氯代吡啶类农药残留及其高效去除与转化技术,是水环境污染控制研究的热点和难点。从结构上看,碳氯键断裂是实现氯代吡啶类化合物降解的关键所在。基于国内外研究进展,综述了此类污染物的去除转化技术,从污染物吸附、高级氧化处理、催化氢化及耦合联用技术等角度,系统阐述了污染物去除转化的关键因素、相关工艺作用机制及现存技术挑战。在现有技术中,吸附法仍面临新型吸附材料研发、吸附剂再生等问题;高级氧化技术污染物矿化率高,但氧化效率低、运营成本高;催化氢化法定向选择催化降解污染物,但存在污染物降解不完全的问题;生物处理技术经济有效,但对污染物的去除转化率仍有待提高。研究表明:由于氯代吡啶类污染物的难降解特性及各工艺的局限性,单一的处理技术难以实现污染物矿化,多种处理方法联用是实现污染物高效去除的可行策略。开展环境中氯代吡啶类污染物的转化技术与机制研究,可为实现风险性污染物高效脱毒、降解提供参考。
  • [1] MATSUSHITAL T,MORIMOTO A,KURIYAMA T,et al.Removals of pesticides and pesticide transformation products during drinking water treatment processes and their impact on mutagen formation potential after chlorination[J].Water Research,2018,138(1):67-76.
    [2] ALEXANDRINO D A M,MUCHA A P,ALMEIDA C M R,et al.Microbial degradation of two highly persistent fluorinated fungicides-epoxiconazole and fludioxonil[J].Journal of Hazardous Materials,2020,394:122545.
    [3] ZHANG H Y,YUAN X Z,XIONG T,et al.Bioremediation of co-contaminated soil with heavy metals and pesticides:influence factors,mechanisms and evaluation methods[J].Chemical Engineering Journal,2020,398:125657.
    [4] FIORENZA R,DI MAURO A,CANTARELLA M,et al.Preferential removal of pesticides from water by molecular imprinting on TiO2 photocatalysts[J].Chemical Engineering Journal,2020,379:122309.
    [5] YANG X R,DING X,ZHOU L,et al.New insights into clopyralid degradation by sulfate radical:pyridine ring cleavage pathways[J].Water Research,2020,171:115378.
    [6] GARCIA-MUNOZ P,DACHTLER W,ALTMAYER B,et al.Reaction pathways,kinetics and toxicity assessment during the photocatalytic degradation of glyphosate and myclobutanil pesticides:influence of the aqueous matrix[J].Chemical Engineering Journal,2020,384:123315.
    [7] SEMITSOGLOU-TSIAPOU S,TEMPLETON M R,GRAHAM N J,et al.Low pressure UV/H2O2 treatment for the degradation of the pesticides metaldehyde,clopyralid and mecoprop-Kinetics and reaction product formation[J].Water Research,2016,91(1):285-294.
    [8] SOJIC D V,ANDERLUH V B,ORCIC D Z,et al.Photodegradation of clopyralid in TiO2 suspensions:identification of intermediates and reaction pathways[J].Journal of Hazardous Materials,2009,168(1):94-101.
    [9] MACIEL G M,SOUZA C G M D,ARAUJO C A V D,et al.Biosorption of herbicide picloram from aqueous solutions by live and heat-treated biomasses of Ganoderma lucidum(Curtis) P.Karst and Trametes sp.[J].Chemical Engineering Journal,2013,215/216(9):331-338.
    [10] LI H Y,QIU Y Z,YAO T,et al.Evaluation of seven chemical pesticides by mixed microbial culture (PCS-1):degradation ability,microbial community,and Medicago sativa phytotoxicity[J].Journal of Hazardous Materials,2020,389:121834.
    [11] 王建龙.废水中工业强度氯吡啉的生物处理生物降解与处理毒性[J].四川师范大学学报,2020,43(2):143-173.
    [12] HASAN Z,JHUNG S H.Removal of hazardous organics from water using metal-organic frameworks (MOFs):plausible mechanisms for selective adsorptions[J].Journal of Hazardous Materials,2015,283(9):329-339.
    [13] de SMEDT C,SPANOGHE P,BISWAS S,et al.Comparison of different solid adsorbents for the removal of mobile pesticides from aqueous solutions[J].Adsorpt,2015,21(3):243-254.
    [14] ZHANG H Q,JIA Y Y,KHANALS K,et al.Understanding the role of extracellular polymeric substances on ciprofloxacin adsorption in aerobic sludge,anaerobic sludge,and sulfate-reducing bacteria sludge systems[J].Environmental Science& Technology,2018,52(11):6476-6486.
    [15] 李文刚,孙耀胜,么强,等.新型有机污染物污染现状及其深度处理工艺研究进展[J].环境工程,2021,39(8):77-87.
    [16] MARCO-BROWN J L,ARECO M M,TORRES SANCHEZ R M,et al.Adsorption of picloram herbicide on montmorillonite:kinetic and equilibrium studies[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2014,449(2):121-128.
    [17] MARCO-BROWN J L,BARBOSA-LEMA C M,TORRES SANCHEZ R M,et al.Adsorption of picloram herbicide on iron oxidepillared montmorillonite[J].Applied Clay Science,2012,58(1):25-33.
    [18] KHAN S,HE X,KHAN J A,et al.Kinetics and mechanism of sulfate radical-and hydroxyl radical-induced degradation of highly chlorinated pesticide lindane in UV/peroxymonosulfate system[J].Chemical Engineering Journal,2017,318(5):135-142.
    [19] 孙怡,于利亮,黄浩斌,等.高级氧化技术处理难降解有机废水的研发趋势及实用化进展[J].化工学报,2017,68(5):1743.
    [20] SKOUTELIS C,ANTTONOPOULOU M,KONSTANTINOU I,et al.Photodegradation of 2-chloropyridine in aqueous solution:reaction pathways and genotoxicity of intermediate products[J].Journal of Hazardous Materials,2017,321(9):753-763.
    [21] TIZAOUI C,MEZUGHI K,BICKLEY R.Heterogeneous photocatalytic removal of the herbicide clopyralid and its comparison with UV/H2O2 and ozone oxidation techniques[J].Desalination,2011,273(1):197-204.
    [22] WESTPHAL K,SALIGER R,JAGER D,et al.Degradation of clopyralid by the fenton reaction[J].Industrial& Engineering Chemistry Research,2013,52(39):13924-13929.
    [23] XU G,BU T T,WU M H,et al.Electron beam induced degradation of clopyralid in aqueous solutions[J].Journal of Radioanalytical and Nuclear Chemistry,2011,288(3):759-764.
    [24] ORELLANA-GARACIA F,ALVAREZ M A,LOPEZ-RAMON V,et al.Photodegradation of herbicides with different chemical natures in aqueous solution by ultraviolet radiation:effects of operational variables and solution chemistry[J].Chemical Engineering Journal,2014,255(6):307-315.
    [25] PEREZ-LUCAS G,ALISTE M,VELA N,et al.Decline of fluroxypyr and triclopyr residues from pure,drinking and leaching water by photo-assisted peroxonation[J].Process Safety and Environmental Protection,2020,137(2):358-365.
    [26] WU M H,YANG X Y,XU G,et al.UV-Based oxidation processes for removal of clopyralid:optimal conditions,efficiency,and by-products[J].Environmental Engineering Science,2015,32(12):998-1006.
    [27] BERBERIDOU C,KYZAS G Z,PASPALTSIS I,et al.Photocatalytic disinfection and purification of water employing reduced graphene oxide/TiO2 composites[J].Journal of Chemical Technology& Biotechnology,2019,94(12):3905-3914.
    [28] MACIAS-SANCHEZ J J,HINOJOSA-REYES L,CABALLERO-QUINTERO A,et al.Synthesis of nitrogen-doped ZnO by sol-gel method:characterization and its application on visible photocatalytic degradation of 2,4-D and picloram herbicides[J].Photochemical& Photobiological Sciences,2015,14(3):536-542.
    [29] RASHEED P,HAQ S,WASEEM M,et al.Green synthesis of vanadium oxide-zirconium oxide nanocomposite for the degradation of methyl orange and picloram[J].Materials Research Express,2020,7(2):025011.
    [30] ABRANMOVIC B F,ANDERLUH V B,TOPALOV A S,et al.Titanium dioxide mediated photocatalytic degradation of 3-amino-2-chloropyridine[J].Applied Catalysis B:Environment,2004,48(3):213-221.
    [31] OZCAN A,SAHIN Y,KOPARAL A S,et al.Degradation of picloram by the electro-Fenton process[J].Journal of Hazardous Materials,2008,153(1/2):718-727.
    [32] WANG J L,CHEN H.Catalytic ozonation for water and wastewater treatment:recent advances and perspective[J].Science of teh Total Environment,2020,704:135249.
    [33] KANAKARAJU D,GLASS B D,OELGEMOLLER M.Advanced oxidation process-mediated removal of pharmaceuticals from water:a review[J].Journal of Environmental Management,2018,219(4):189-207.
    [34] WANG Y,LI H Y,YI P,et al.Degradation of clofibric acid by UV,O3 and UV/O3 processes:performance comparison and degradation pathways[J].Journal of Hazardous Materials,2019,379:120771.
    [35] ORTEGA-LIEBANA M C,SANCHEZ-LOPEZ E,HIDALGO-CARRILLO J,et al.A comparative study of photocatalytic degradation of 3-chloropyridine under UV and solar light by homogeneous (photo-Fenton) and heterogeneous (TiO2) photocatalysis[J].Applied Catalysis B:Environment,2012,127(8):316-322.
    [36] PHOON B L,ONG C C,MOHAMED SAHEED M S,et al.Conventional and emerging technologies for removal of antibiotics from wastewater[J].Journal of Hazardous Materials,2020,400:122961.
    [37] CARBONERAS CONTREAS M B,FOURCADE F,ASSADI A,et al.Electro Fenton removal of clopyralid in soil washing effluents[J].Chemosphere,2019,237:124447.
    [38] SIEDLECKA E M,OFIARSKA A,BORZYSZKOWSKA A F,et al.Cytostatic drug removal using electrochemical oxidation with BDD electrode:degradation pathway and toxicity[J].Water Research,2018,144:235-245.
    [39] KARAÇAL A,MUNOZ-MORALES M,KALKAN S,et al.A comparison of the electrolysis of soil washing wastes with active and non-active electrodes[J].Chemosphere,2019,225:19-26.
    [40] TEEVS L,VORLOP K D,PRUßE U.Model study on the aqueous-phase hydrodechlorination of clopyralid on noble metal catalysts[J].Catalysis Communications,2011,14(1):96-100.
    [41] PENG H,GUO J B,LI H B,et al.Granulation and response of anaerobic granular sludge to allicin stress while treating allicin-containing wastewater[J].Biochemical Engineering Journal,2021,169:107971.
    [42] 罗开华.生化法处理吡啶羧酸类废水的研究[D].湘潭:湘潭大学,2019.
    [43] TU J,GUO J B,LU C C,et al.Effect and mechanism of cyclodextrins on nitrate reduction and bio-activity by S.oneidensis.MR-1[J].Bioresource Technology,2020,317:124002.
    [44] ZHANG C,WANG S H,LV Z W,et al.NanoFe3O4 accelerates anoxic biodegradation of 3,5,6-trichloro-2-pyridinol[J].Chemosphere,2019,235(6):185-193.
    [45] SOLIS R R,JAVIER RIVAS F,GIMENO O,et al.Photocatalytic ozonation of pyridine-based herbicides by N-doped titania[J].Journal of Chemical Technology& Biotechnology,2016,91(7):1998-2008.
    [46] REDDY SP V,KIM K H.A review of photochemical approaches for the treatment of a wide range of pesticides[J].Journal of Hazardous Materials,2015,285(11):325-335.
    [47] RAJAH Z,GUIZA M,SOLIS R R,et al.Clopyralid degradation using solar-photocatalytic/ozone process with olive stone activated carbon[J].Journal of Environmental Chemical Engineering,2019,7(1):102900.
    [48] RAJAH Z,GUIZA M,SOLIS R R,et al.Catalytic and photocatalytic ozonation with activated carbon as technologies in the removal of aqueous micropollutants[J].Journal of Photochemistry and Photobiology A:Chem,2019,382:111961.
    [49] BERBERIDOU C,KISIOU V,KARAHANIDOU S,et al.Photocatalytic degradation of the herbicide clopyralid:kinetics,degradation pathways and ecotoxicity evaluation[J].Journal of Chemical Technolgoy& Biotechnology,2016,91:2510.
    [50] MUNOZ-MORALES M,SAEZ C,CANIZARES P,et al.Improvement of electrochemical oxidation efficiency through combination with adsorption processes[J].Journal of Environmental Management,2020,262:110364.
    [51] MARTIN de VIDALES M J,CASTRO M P,SAEZ C,et al.Radiation-assisted electrochemical processes in semi-pilot scale for the removal of clopyralid from soil washing wastes[J].Separation and Purification Technology,2019,208(4):100-109.
    [52] RASCHITOR A,LLANOS J,RODRIGO M A,et al.Is it worth using the coupled electrodialysis/electro-oxidation system for the removal of pesticides?Process modelling and role of the pollutant[J].Chemosphere,2020,246:125781.
    [53] BARBOSA FERREIRA M,SOUZA F L,MUNOZ-MORALES M,et al.Clopyralid degradation by AOPs enhanced with zero valent iron[J].Journal of Hazardous Materials,2020,392:122282.
    [54] CARBONERAS M B,CANIZARES P,RODRIGO M A,et al.Improving biodegradability of soil washing effluents using anodic oxidation[J].Bioresource Technology,2018,252(12):1-6.
    [55] SEDLAZECK K P,VOLLPRECHT D,MULLER P,et al.Decomposition of dissolved organic contaminants by combining a boron-doped diamond electrode,zero-valent iron and ultraviolet radiation[J].Chemosphere,2019,217(11):897-904.
  • 加载中
计量
  • 文章访问数:  117
  • HTML全文浏览量:  3
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 网络出版日期:  2022-07-02

目录

    /

    返回文章
    返回