HIGH SPATIAL RESOLUTION ENVIRONMENTAL DATASET AND ITS APPLICATION
-
摘要: 高空间分辨率环境数据库的构建和应用对于解决日益突出的环境问题至关重要。高空间分辨率数据能够在精细尺度上体现研究对象的具体分布和特点,识别环境污染重点地区,有助于制定因地制宜的环境管控政策。国内外学者已构建大量的高分辨率环境数据库并将其应用于解决多种环境问题。然而,目前尚未有学者对高空间分辨率环境数据库的类型和应用进行系统性阐述。因此,从尺度和物质类型2个方面总结了常见的高空间分辨率环境数据库,并对这些数据集在排放源分析、环境影响评估和经济影响因素分析3个方面的应用进行疏理,并对未来研究提出了进一步提高分辨率、提高数据质量、拓宽应用研究范围的建议。Abstract: The construction and application of high-spatial-resolution environmental databases are critical to addressing increasingly prominent environmental issues.High-spatial-resolution data reflects the specific distribution and characteristics of research subjects at a fine scale,which can identify the hotspots of environmental pollution and help formulate environmental control policies tailored to the local conditions.Scholars at home and abroad have built a large number of high-spatial-resolution environmental databases and applied them to solve different environmental problems.Therefore,this paper systematically summarizes the common high-spatial-resolution environmental databases from the aspects of scale and substance type.Moreover,the application of high-spatial-resolution environmental databases has been summarized in three different aspects,including emission source analysis,environmental impact assessment,and economic influencing factors.This article proposes several recommendations to improve the existing high-spatial-resolution environmental databases,including further improving the resolution to ensure data accuracy,improving data quality and broadening the scope of research application.
-
Key words:
- high spatial resolution /
- dataset /
- emission inventory /
- environmental impact assessment
-
[1] 杨永崇.高空间分辨率空间数据库的研究[C]//中国测绘学会全国会员代表大会暨综合性学术年会, 2005:160-163. [2] 徐晨曦,陈军辉,李媛,等.四川省基于第二次污染源普查数据的人为源大气污染源排放清单及特征[J].环境科学, 2020, 41(10):4482-4494. [3] OLIVIER J, BOUWMAN A, van DER MAAS C, et al. Emission database for global atmospheric research (EDGAR)[J]. Environmental Monitoring and Assessment, 1994, 31(1):93-106. [4] ANDREÃO W L, ALONSO M F, KUMAR P, et al. Top-down vehicle emission inventory for spatial distribution and dispersion modeling of particulate matter[J]. Environmental Science and Pollution Research, 2020, 27(29):35952-35970. [5] RAYNER P, RAUPACH M, PAGET M, et al. A new global gridded data set of CO2 emissions from fossil fuel combustion:Methodology and evaluation[J]. Journal of Geophysical Research. Atmospheres, 2010, 115(19). [6] GHOSH T, ELVIDGE C D, SUTTON P C, et al. Creating a global grid of distributed fossil fuel CO2 emissions from nighttime satellite imagery[J]. Energies, 2010, 3(12):1895-1913. [7] CUI X L, LEI Y T, ZHANG F, et al. Mapping spatiotemporal variations of CO2(carbon dioxide) emissions using nighttime light data in Guangdong Province[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2019, 110:89-98. [8] MARCOTULLIO P J, SARZYNSKI A, ALBRECHT J, et al. A top-down regional assessment of urban greenhouse gas emissions in Europe[J]. Ambio, 2014, 43(7):957-968. [9] 张恺,骆春会,陈旭锋,等.中国不同尺度大气污染物排放清单编制工作综述[J].中国环境监测, 2019, 35(3):59-68. [10] 潘春梅,朱翔,王健,等.大气污染源排放清单研究进展[J].环境科学导刊, 2020, 39(4):72-78. [11] 李蔚,孙宇,程子峰,等.国外大气污染物排放清单编制机制及对我国的启示[J].环境保护, 2014, 42(7):64-66. [12] 张永香,黄磊,周波涛,等. 1.5℃全球温控目标浅析[J].气候变化研究进展, 2017, 13(4):299-305. [13] CHANGE UNFCOC. National Greenhouse Gas Inventory Data for the Period 1990-2018[R]. 2020. [14] 全球大气研究排放数据库(EDGAR)[EB/OL].[2021-11-09]. https://edgar.jrc.ec.europa.eu/. [15] CRIPPA M, GUIZZARDI D, SOLAZZO E, et al. GHG emissions of all world countries-2021 Report[R]. Luxembourg, 2021. [16] JONES M W, ANDREW R M, PETERS G P, et al. Gridded fossil CO2 emissions and related O2 combustion consistent with national inventories 1959-2018[J]. Scientific Data, 2021, 8(1):1-23. [17] 化石燃料数据同化系统(FFDAS)[EB/OL].[2021-11-09]. https://ffdas.rc.nau.edu/. [18] ASEFI-NAJAFABADY S, RAYNER P, GURNEY K, et al. A multiyear, global gridded fossil fuel CO2 emission data product:evaluation and analysis of results[J]. Journal of Geophysical Research:Atmospheres, 2014, 119(17):10213-10231. [19] 全球高分辨燃烧源数据库(PKU-FUEL)[EB/OL].[2021-11-09]. http://inventory.pku.edu.cn/. [20] WANG R, TAO S, CIAIS P, et al. High-resolution mapping of combustion processes and implications for CO2 emissions[J]. Atmospheric Chemistry and Physics, 2013, 13(10):5189-5203. [21] ZHANG X W, WU J S, PENG J, et al. The uncertainty of nighttime light data in estimating carbon dioxide emissions in China:a comparison between DMSP-OLS and NPP-VIIRS[J]. Remote Sensing, 2017, 9(8):797. [22] 全球基础能源设施排放数据库(GID)[EB/OL].[2021-11-09]. http://gidmodel.org.cn/. [23] DOU X Y, WANG Y L, CIAIS P, et al. Near-real-time global gridded daily CO2 emissions[J]. The Innovation, 2022, 3(1):100182. [24] HAN M Y, YAO Q H, LAO J M, et al. China's intra-and inter-national carbon emission transfers by province:a nested network perspective[J]. Science China Earth Science, 2020, 63(6):852-864. [25] CAI B F, LIANG S, ZHOU J, et al. China high-resolution emission database (CHRED) with point emission sources, gridded emission data, and supplementary socioeconomic data[J]. Resources, Conservation and Recycling, 2018, 129:232-239. [26] WANG M S, CAI B F. A two-level comparison of CO2 emission data in China:evidence from three gridded data sources[J]. Journal of Cleaner Production, 2017, 148:194-201. [27] CUI C, SHAN Y L, LIU J H, et al. CO2 emissions and their spatial patterns of Xinjiang cities in China[J]. Applied Energy, 2019, 252:113473. [28] HAN P F, ZENG N, ODA T, et al. A city-level comparison of fossil-fuel and industry processes-induced CO2 emissions over the Beijing-Tianjin-Hebei region from eight emission inventories[J]. Carbon Balance and Management, 2020, 15(1). [29] 冯新斌,仇广乐,付学吾,等.环境汞污染[J].化学进展, 2009, 21(增刊1):436-457. [30] KRABBENHOFT D P, SUNDERLAND E M. Global change and mercury[J]. Science, 2013, 341(6153):1457-1458. [31] MUNTEAN M, JANSSENS-MAENHOUT G, SONG S, et al. Trend analysis from 1970 to 2008 and model evaluation of EDGARv4 global gridded anthropogenic mercury emissions[J]. Science of the Total Environment, 2014, 494:337-350. [32] ZHONG Q R, HUANG Y, SHEN H Z, et al. Global estimates of carbon monoxide emissions from 1960 to 2013[J]. Environmental Science and Pollution Research, 2017, 24(1):864-873. [33] WANG R, TAO S, SHEN H Z, et al. Trend in global black carbon emissions from 1960 to 2007[J]. Environmental Science&Technology, 2014, 48(12):6780-6787. [34] HUANG T B, ZHU X, ZHONG Q R, et al. Spatial and temporal trends in global emissions of nitrogen oxides from 1960 to 2014[J]. Environmental Science&Technology, 2017, 51(14):7992-8000. [35] HUANG Y, SHEN H Z, CHEN H, et al. Quantification of global primary emissions of PM2.5, PM10, and TSP from combustion and industrial process sources[J]. Environmental Science&Technology, 2014, 48(23):13834-13843. [36] HUANG Y, SHEN H Z, CHEN Y L, et al. Global organic carbon emissions from primary sources from 1960 to 2009[J]. Atmospheric Environment, 2015, 122:505-512. [37] MENG W J, ZHONG Q R, YUN X, et al. Improvement of a global high-resolution ammonia emission inventory for combustion and industrial sources with new data from the residential and transportation sectors[J]. Environmental Science&Technology, 2017, 51(5):2821-2829. [38] SHEN H Z, HUANG Y, WANG R, et al. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions[J]. Environmental Science&Technology, 2013, 47(12):6415-6424. [39] 温室气体:空气污染的相互作用和协同作用数据库(GAINS)[EB/OL].[2022-02-11]. https://previous.iiasa.ac.at/web/home/research/researchPrograms/air/Global_emissions.html. [40] 日本国立环境研究所.亚洲区域排放清单(REAS)[EB/OL].[2022-02-11]. https://www.nies.go.jp/REAS/. [41] OHARA T, AKIMOTO H, KUROKAWA J-I, et al. An Asian emission inventory of anthropogenic emission sources for the period 1980-2020[J]. Atmospheric Chemistry and Physics, 2007, 7(16):4419-4444. [42] KUROKAWA J, OHARA T, MORIKAWA T, et al. Emissions of air pollutants and greenhouse gases over Asian regions during 2000-2008:regional emission inventory in Asia (REAS) version 2[J]. Atmospheric Chemistry and Physics, 2013, 13(21):11019-11058. [43] KUROKAWA J, OHARA T. Long-term historical trends in air pollutant emissions in Asia:regional emission inventory in ASia (REAS) version 3[J]. Atmospheric Chemistry and Physics, 2020, 20(21):12761-12793. [44] MEIC团队中国多尺度排放清单模型(MEIC)[EB/OL]. http://meicmodel.org/?page_id=131. [45] LIU F, ZHANG Q, TONG D, et al. High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010[J]. Atmospheric Chemistry and Physics, 2015, 15(23):13299-13317. [46] LEI Y, ZHANG Q, HE K B, et al. Primary anthropogenic aerosol emission trends for China, 1990-2005[J]. Atmospheric Chemistry and Physics, 2011, 11(3):931-954. [47] LEI Y, ZHANG Q, NIELSEN C, et al. An inventory of primary air pollutants and CO2 emissions from cement production in China, 1990-2020[J]. Atmospheric Environment, 2011, 45(1):147-154. [48] LI M, ZHANG Q, ZHENG B, et al. Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990-2017:drivers, speciation and ozone formation potential[J]. Atmospheric Chemistry and Physics, 2019, 19(13):8897-8913. [49] ZHANG Q, ZHENG Y X, TONG D, et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017[J]. Proceedings of the National Academy of Sciences, 2019, 116(49):24463-24469. [50] TONG D, ZHANG Q, LIU F, et al. Current emissions and future mitigation pathways of coal-fired power plants in China from 2010 to 2030[J]. Environmental Science&Technology, 2018, 52(21):12905-12914. [51] ZHENG B, ZHANG Q, BORKEN-KLEEFELD J, et al. How will greenhouse gas emissions from motor vehicles be constrained in China around 2030?[J]. Applied Energy, 2015, 156:230-240. [52] ZHENG B, ZHANG Q, DAVIS S J, et al. Infrastructure shapes differences in the carbon intensities of Chinese cities[J]. Environmental Science&Technology, 2018, 52(10):6032-6041. [53] CHENG J, TONG D, LIU Y, et al. Air quality and health benefits of China's current and upcoming clean air policies[J]. Faraday Discussions, 2021, 226:584-606. [54] LIU J, ZHENG Y, GENG G, et al. Decadal changes in anthropogenic source contribution of PM2.5 pollution and related health impacts in China, 1990-2015[J]. Atmospheric Chemistry and Physics, 2020, 20(13):7783-7799. [55] ZHAO H Y, LIU Y, GENG G N, et al. Imbalanced transfer of trade-related air pollution mortality in China[J]. Environmental Research Letters, 2020, 15(9):094009. [56] TONG D, CHENG J, LIU Y, et al. Dynamic projection of anthropogenic emissions in China:methodology and 2015-2050 emission pathways under a range of socio-economic, climate policy, and pollution control scenarios[J]. Atmospheric Chemistry and Physics, 2020, 20(9):5729-5757. [57] 梁赛,李楠,齐剑川,等.中国网格化经济与环境数据库(CGEED)[EB/OL].[2021-11-09]. https://www.cgeed.net. [58] CHEN L, LIANG S, LIU M D, et al. Trans-provincial health impacts of atmospheric mercury emissions in China[J]. Nature Communications, 2019, 10(1):1484. [59] 中国空气污染控制成本效益与达标评估系统(ABaCAS)[EB/OL].[2022-02-11]. http://www.abacas-dss.com/. [60] MORAN D, KANEMOTO K, JIBORN M, et al. Carbon footprints of 13000 cities[J]. Environmental Research Letters, 2018, 13(6):064041. [61] ZHAO Y, NIELSEN C P, MCELROY M B, et al. CO emissions in China:uncertainties and implications of improved energy efficiency and emission control[J]. Atmospheric Environment, 2012, 49:103-113. [62] WANG R, TAO S, WANG W T, et al. Black carbon emissions in China from 1949 to 2050[J]. Environmental science&technology, 2012, 46(14):7595-7603. [63] LIU Q, MALARVIZHI A S, LIU W, et al. Spatiotemporal changes in global nitrogen dioxide emission due to COVID-19 mitigation policies[J]. Science of the Total Environment, 2021, 776:146027. [64] KALTENEGGER K, WINIWARTER W. Global gridded nitrogen indicators:influence of crop maps[J]. Global biogeochemical cycles, 2020, 34(12). [65] 闫广轩,杨洁,张朴真,等.新乡市餐饮源PM2.5排放清单[J].河南师范大学学报(自然科学版), 2021(6):99-105. [66] WU Q, WANG S, LI G, et al. Temporal trend and spatial distribution of speciated atmospheric mercury emissions in China during 1978-2014[J]. Environmental Science&Technology, 2016, 50(24):13428-13435. [67] LIU K, WU Q, WANG S, et al. Highly resolved inventory of mercury release to water from anthropogenic sources in China[J]. Environmental Science&Technology, 2021. [68] 阚中华,刘长平.基于雾霾协同治理的农业污染控制研究[J].黑龙江农业科学, 2021(11):91-94. [69] ZHOU F, SHANG Z Y, CIAIS P, et al. A new high-resolution N2O emission inventory for China in 2008[J]. Environmental Science&Technology, 2014, 48(15):8538-8547. [70] PAN Y D, ZHAO C, LIU Z R. Estimating the daily NO2 concentration with high spatial resolution in the Beijing-Tianjin-Hebei region using an ensemble learning model[J]. Remote Sensing, 2021, 13(4):758. [71] LI M, LIU H, GENG G, et al. Anthropogenic emission inventories in China:a review[J]. National Science Review, 2017, 4(6):834-866. [72] STREETS D G, GUPTA S, WALDHOFF S T, et al. Black carbon emissions in China[J]. Atmospheric Environment, 2001, 35(25):4281-4296. [73] STREETS D G, HAO J M, WU Y, et al. Anthropogenic mercury emissions in China[J]. Atmospheric Environment, 2005, 39(40):7789-7806. [74] TIAN H Z, WANG Y, XUE Z G, et al. Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980-2007[J]. Atmospheric Chemistry and Physics, 2010, 10(23):11905-11919. [75] CHENG K, WANG Y, TIAN H Z, et al. Atmospheric emission characteristics and control policies of five precedent-controlled toxic heavy metals from anthropogenic sources in China[J]. Environmental Science&Technology, 2015, 49(2):1206-1214. [76] 李振宇,黄格省.推动我国能源生产革命的途径分析[J].化工进展, 2015, 34(10):3521-3529. [77] 齐玉春,董云社.中国能源领域温室气体排放现状及减排对策研究[J].地理科学, 2004,24(5):528-534. [78] CAI B F, LU J, WANG J H, et al. A benchmark city-level carbon dioxide emission inventory for China in 2005[J]. Applied Energy, 2019, 233:659-673. [79] SHAN Y L, GUAN D B, HUBACEK K, et al. City-level climate change mitigation in China[J]. Science Advances, 2018, 4(6):eaaq0390. [80] MENG L N, GRAUS W, WORRELL E, et al. Estimating CO2(carbon dioxide) emissions at urban scales by DMSP/OLS (Defense Meteorological Satellite Program's Operational Linescan System) nighttime light imagery:methodological challenges and a case study for China[J]. Energy, 2014, 71:468-478. [81] 孙健,王旭方,殷祥男,等.水泥产业的未来趋势及发展特点[J].中国水泥, 2021(9):66-69. [82] 徐东耀,周昊,刘伟,等.我国水泥行业大气污染物排放特征[J].环境工程, 2015, 33(6):76-79,138. [83] CAI X R, CAI B F, ZHANG H R, et al. Establishment of high-resolution atmospheric mercury emission inventories for Chinese cement plants based on the mass balance method[J]. Environmental Science&Technology, 2020, 54(21):13399-13408. [84] HUA S B, TIAN H Z, WANG K, et al. Atmospheric emission inventory of hazardous air pollutants from China's cement plants:temporal trends, spatial variation characteristics and scenario projections[J]. Atmospheric Environment, 2016, 128:1-9. [85] HAUSCHILD M Z. Assessing environmental impacts in a life-cycle perspective[J]. Environmental Science&Technology, 2005, 39(4):81A-88A. [86] ZHOU Y, SHAN Y L, GUAN D B, et al. Sharing tableware reduces waste generation, emissions and water consumption in China's takeaway packaging waste dilemma[J]. Nature Food, 2020, 1(9):552-561. [87] HUANG Y Y, ZHOU B H, LI N, et al. Spatial-temporal analysis of selected industrial aquatic heavy metal pollution in China[J]. Journal of Cleaner Production, 2019, 238:117944. [88] FAN Q Z, ZHANG Y, MA W C, et al. Spatial and seasonal dynamics of ship emissions over the Yangtze River Delta and East China Sea and their potential environmental influence[J]. Environmental Science&Technology, 2016, 50(3):1322-1329. [89] LIU Y, TENG Y, LIANG S, et al. Establishment of PM10 and PM2.5 emission inventories from wind erosion source and simulation of its environmental impact based on WEPS-Models3 in southern Xinjiang, China[J]. Atmospheric Environment, 2021, 248:118222. [90] CHEEWAPHONGPHAN P, JUNPEN A, GARIVAIT S, et al. Emission inventory of on-road transport in Bangkok metropolitan region (BMR) development during 2007 to 2015 using the GAINS model[J]. Atmosphere, 2017, 8(9):167. [91] HUANG L, LIU S, YANG Z Y, et al. Exploring deep learning for air pollutant emission estimation[J]. Geoscientific Model Development, 2021, 14(7):4641-4654. [92] ZHENG B, CHENG J, GENG G N, et al. Mapping anthropogenic emissions in China at 1 km spatial resolution and its application in air quality modeling[J]. Science Bulletin, 2021, 66(6):612-620. [93] HE Q Q, ZHANG M, SONG Y M, et al. Spatiotemporal assessment of PM2.5 concentrations and exposure in China from 2013 to 2017 using satellite-derived data[J]. Journal of Cleaner Production, 2021, 286:124965. [94] LIU J, YIN H, TANG X, et al. Transition in air pollution, disease burden and health cost in China:a comparative study of long-term and short-term exposure[J]. Environmental Pollution, 2021, 277:116770. [95] LI J S, ZHOU S L, WEI W D, et al. China's retrofitting measures in coal-fired power plants bring significant mercury-related health benefits[J]. One Earth, 2020, 3(6):777-787. [96] WANG R, TAO S, BALKANSKI Y, et al. Exposure to ambient black carbon derived from a unique inventory and high-resolution model[J]. Proceedings of the National Academy of Sciences, 2014, 111(7):2459-2463. [97] SHEN F Z, ZHANG L, JIANG L, et al. Temporal variations of six ambient criteria air pollutants from 2015 to 2018, their spatial distributions, health risks and relationships with socioeconomic factors during 2018 in China[J]. Environment International, 2020, 137:105556. [98] LI Y M, CHEN L, LIANG S, et al. Spatially explicit global hotspots driving China's mercury related health impacts[J]. Environmental Science&Technology, 54(22):14547-14557. [99] 徐丽曲,李恒吉,吴金甲,等.西北地区居民生活碳排放现状分析及预测[J].干旱区地理, 2019, 42(5):1166-1175. [100] CAZCARRO I, DUARTE R, SÁNCHEZ-CHÓLIZ J. Downscaling the grey water footprints of production and consumption[J]. Journal of Cleaner Production, 2016, 132:171-183. [101] 万励,金鹰.国外应用城市模型发展回顾与新型空间政策模型综述[J].城市规划学刊, 2014(1):81-91. [102] SUN Z X, TUKKER A, BEHRENS P. Going global to local:connecting top-down accounting and local impacts, a methodological review of spatially explicit input-output approaches[J]. Environmental Science&Technology, 2018, 53(3):1048-1062. [103] YANG Y T, QU S, CAI B F, et al. Mapping global carbon footprint in China[J]. Nature Communications, 2020, 11(1):2237. [104] YUAN Y, CHUAI X W, ZHAO R Q, et al. Tracing China's external driving sources and internal emission hotspots of export-driven PM10 emission[J]. Journal of Cleaner Production, 2020, 253:119867. [105] CHEN Y L, WANG R, SHEN H Z, et al. Global mercury emissions from combustion in light of international fuel trading[J]. Environmental Science&Technology, 2014, 48(3):1727-1735. [106] WANG S J, HUANG Y, ZHOU Y. Spatial spillover effect and driving forces of carbon emission intensity at the city level in China[J]. Journal of Geographical Sciences, 2019,29(2):231-252. [107] SHAN Y L, FANG S, CAI B F, et al. Chinese cities exhibit varying degrees of decoupling of economic growth and CO2 emissions between 2005 and 2015[J]. One Earth, 2021, 4(1):124-134. [108] YOU W H, LV Z K. Spillover effects of economic globalization on CO2 emissions:a spatial panel approach[J]. Energy Economics, 2018, 73:248-257. [109] GAO C X, TAO S M, HE Y Y, et al. Effect of population migration on spatial carbon emission transfers in China[J]. Energy Policy, 2021, 156:112450.
点击查看大图
计量
- 文章访问数: 259
- HTML全文浏览量: 82
- PDF下载量: 17
- 被引次数: 0