COASTAL LAND-OCEAN-ATMOSPHERE COOPERATIVE MANAGEMENT OF NITROGEN AND PHOSPHORUS POLLUTION:MONITORING,MODELING AND DECISION-MAKING
-
摘要: 陆海统筹已成为美丽海湾建设和海岸带可持续发展的关键战略。其中,陆海气氮磷污染协同治理是持续改善近岸海域生态环境质量的关键,但其缺乏理论指导与技术支撑。梳理了陆海气环境介质与界面过程的监测、模型(流域-河流模型、河口-近海模型、大气沉降模型等)的研究现状、技术难点和发展趋势。为加快推进流域-海域综合治理,亟须建立陆海气氮磷污染监测-模型-评估-决策体系。建议加快陆海气界面氮磷通量监测技术开发与应用,构建陆海气集成或耦合模型,在不同时空尺度上探究氮磷污染来源、主要输移通道、跨界面过程和机制。提出了未来研究重点:1)基于监测与模型提升海岸带生态系统的科学认知;2)构建陆海统筹视角的富营养化评估与生态系统健康评估方法;3)创新分区分类环境容量核算与分配方法;4)研究海岸带环境污染多目标治理优化方案;5)开展海岸带社会-经济-环境系统互馈模拟与多主体协同决策,助力生态环境治理能力现代化。Abstract: Land-ocean coordination management has become a key strategy for beautiful bay construction and sustainable development of coastal zones.Among them,cooperative prevention and control of land and ocean-based pollution are of great importance to improve the coastal eco-environment quality.However,theory and technology support in this regard has fallen short.Here,we review the status quo,challenges,and research fronts of the monitoring technologies applied in multi-media and multi-interface environments of land-ocean-atmosphere as well as the relevant models (e.g.,watershed-river models,estuary-coastal models,atmospheric deposition models).To facilitate the integrated watershed-coast management,an integrated system that incorporates monitoring,modeling,assessment,and decision-making is urgently needed.It is suggested to facilitate the development of monitoring technology on nitrogen and phosphorus flux in multi-interface,the development of the integrated land-ocean-atmosphere model,and the investigation on the sources,transport pathways,and multi-interface process interactions of nitrogen and phosphorus pollution.Future key research tasks are proposed as follows:1) to advance the knowledge of the land-ocean-atmosphere environment at the system level based on the monitoring and modeling techniques;2) to assess eutrophication and ecosystem health from the lens of land-ocean coordination;3) to create the spatially-explicit and category-specific environmental capacity allocation method;4) to study optimal solutions that satisfy multiple objectives for coastal pollution control;5) to facilitate the research on the feedbacks of the society-economy-environment system and collaborative decision-making via multi agents.These applications are expected to modernize our capability for ecological and environmental governance.
-
[1] 陈能汪.全球变化下九龙江河流河口系统营养盐循环过程、通量与效应[J].海洋地质与第四纪地质, 2017, 38(1):23-31. [2] 骆永明.中国海岸带可持续发展中的生态环境问题与海岸科学发展[J].中国科学院院刊, 2016, 31(10):1133-1142. [3] 余东,朱容娟,梁斌,等.基于陆海统筹的渤海山东省近岸海域总氮总量控制研究[J].海洋环境科学, 2021, 40(6):832-837. [4] 焦念志,刘纪化,石拓,等.实施海洋负排放践行碳中和战略[J].中国科学(地球科学), 2021, 51(4):632-643. [5] 苑晶晶,吕永龙,贺桂珍.海洋可持续发展目标与海洋和滨海生态系统管理[J].生态学报, 2017, 37(24):8139-8147. [6] 张悦,许道艳,廖国祥,等.中国海洋保护区的生态环境监测工作[J].海洋环境科学, 2021, 40(5):739-744. [7] 罗川,李兆富,席庆,等. HSPF模型水文水质参数敏感性分析[J].农业环境科学学报, 2014, 33(10):1995-2002. [8] MOHAMOUD Y, ZHANG H. Applications of linked and nonlinked complex models for TMDL development:approaches and challenges[J]. Journal of Hydrologic Engineering, 2019, 24(1):04018055. [9] ARNOLD J G, MORIASI D N, GASSMAN P W, et al. SWAT:model use, calibration, and validation[J]. Transactions of the ASABE, 2012, 55(4):1491-1508. [10] HEAPS N. On the numerical solution of the three-dimensional hydrodynamical equations for tides and storm surges[J]. Mem. Soc. Roy. Sci. Liege, 1972, 6(1):143-180. [11] BLUMBERG A, MELLOR G. A description of a three-dimensional coastal ocean circulation model[M]. Coastal and Estuarine Sciences, American Geophysical Union, 1987, 1-16. [12] 张存智.黄海北部海域三维潮流数值模型[J].海洋预报, 2000, 17(1):1-12. [13] 朱耀华,方国洪.陆架和浅海环流的一个三维正压模式及其在渤、黄、东海的应用[J].海洋学报, 1994, 16(6):11-25. [14] SEINFELD J H, PANDIS S N. Atmospheric chemistry and physics:from air pollution to climate change[M]. 3rd edition, Hoboken, New Jersey, 2016. [15] ZHANG L M, PADRO J, BARRIE L,et al. A size-segregated particle dry deposition scheme for an atmospheric aerosol module[J]. Atmospheric Environment, 2001, 35(3):549-560. [16] 朴香花,周集体,王竞,等.磷酸盐在大连湾时空分布的数值模拟研究[J].大连理工大学学报, 2006, 46(6):819-822. [17] 张燕,孙英兰,袁道伟,等.胶州湾氮、磷浓度的三维数值模拟[J].中国海洋大学学报, 2007, 37(1):21-26. [18] YU D, CHEN N W, CHENG P, et al. Hydrodynamic impacts on tidal-scale dissolved inorganic nitrogen cycling and export across the estuarine turbidity maxima to coast[J]. Biogeochemistry, 2020, 151(1):81-98. [19] LUO X, JIAO J J. Submarine groundwater discharge and nutrient loadings in Tolo Harbor, Hong Kong using multiple geotracer-based models, and their implications of red tide outbreaks[J]. Water Research, 2016, 102:11-31. [20] WANG F F, XIAO K, SANTOS I R, et al. Porewater exchange drives nutrient cycling and export in a mangrove-salt marsh ecotone[J]. Journal of Hydrology, 2022, 606:127401. [21] IM U, CHRISTODOULAKI S, VIOLAKI K, et al. Atmospheric deposition of nitrogen and sulfur over southern Europe with focus on the Mediterranean and the Black Sea[J]. Atmospheric Environment, 2013, 81:660-670. [22] ZHU L, CHEN Y, GUO L, et al. Estimate of dry deposition fluxes of nutrients over the East China Sea:the implication of aerosol ammonium to non-sea-salt sulfate ratio to nutrient deposition of coastal oceans[J]. Atmospheric Environment, 2013, 69:131-138. [23] GLASGOW H B, BURKHOLDER J M, REED R E, et al. Real-time remote monitoring of water quality:a review of current applications, and advancements in sensor, telemetry, and computing technologies[J]. Journal of Experimental Marine Biology and Ecology, 2004, 300(1/2):409-448. [24] MA J, LI P C, CHEN Z Y, et al. Development of an integrated syringe-pump-based environmental-water analyzer (iSEA) and application of it for fully automated real-time determination of ammonium in fresh water[J]. Analytical Chemistry, 2018, 90:6431-6435. [25] GALLARDO-GONZALEZ J, BARAKET A, BOUDJAOUI S, et al. A fully integrated passive micro fluidic Lab-on-a-Chip for real-time electrochemical detection of ammonium:sewage applications[J]. Science of the Total Environment, 2019, 653:1223-1230. [26] LOHSE K A, SANDERMAN J, AMUNDSON R. Identifying sources and processes influencing nitrogen export to a small stream using dual isotopes of nitrate[J]. Water Resources Research, 2013, 49(3):5715-5731. [27] DUDLEY B D, SHIMA J S. Algal and invertebrate bioindicators detect sewage effluent along the coast of Titahi Bay, Wellington, New Zealand[J]. New Zealand Journal of Marine and Freshwater Research, 2010, 44(1):39-51. [28] BRIAND C, PLAGNES V, SEBILO A M, et al. Combination of nitrate (N, O) and boron isotopic ratios with microbiological indicators for the determination of nitrate sources in karstic groundwater[J]. Environmental Chemistry, 2013, 10:365-369. [29] LI S B, CAI X M, EMAMINEJA S A, et al. Developing an integrated technology-environment-economics model to simulate food-energy-water systems in corn belt watersheds[J]. Environmental Modelling&Software, 2021, 143:105083. [30] HANSEN A T, CAMPBELL T, CHO S J, et al. Integrated assessment modeling reveals near-channel management cost-effective to improve water quality in agricultural watersheds[J]. Proceedings of the National Academy of Sciences, 2021, 118(28). [31] WANG Z Z, ZHANG T Q, TAN C S, et al. Modeling of phosphorus loss from field to watershed:a review[J]. Journal of Environmental Quality, 2020,49(5):1-22. [32] PETERSON S M, FLYNN A T, TRAYLOR J P. Groundwater-flow model of the northern high plains aquifer in colorado, kansas, nebraska, south dakota, and wyoming:U.S. Geological Survey Scientific Investigations Report 2016-5153[R]., 2016. [33] YUAN L F, SINSHAW T, FORSHAY K J. Review of watershed-scale water quality and nonpoint source pollution models[J]. Geosciences, 2020, 10(25):1-36. [34] 李新,马瀚青,冉有华,等.陆地碳循环模型-数据融合:前沿与挑战[J].中国科学(地球科学), 2021, 51(10):1650-1663. [35] LI S B, WALLINGTON K, NIROULA S, et al. A modified response matrix method to approximate SWAT for computationally intense applications[J]. Environmental Modelling and Software, 2022, 148:105269. [36] ZHANG X S, SRINIVASAN R, van LIEW M. Approximating SWAT model using artificial neural network and support vector machine[J]. JAWRA Journal of the American Water Resources Association, 2009, 45(2):460-474. [37] CAI X M, ZENG R J, KANG W H, et al. Strategic planning for drought mitigation under climate change[J]. Journal of Water Resources Planning and Management, 2015, 141(9):04015004. [38] KARPATNE A, WATKINS W, READ J, et al. Physics-guided Neural Networks (PGNN):an application in lake temperature modeling[J]. 2017. [39] SCAVIA D, BERTANI I, OBENOUR D R, et al. Ensemble modeling informs hypoxia management in the northern Gulf of Mexico[J]. Proceedings of the National Academy of Sciences, 2017, 114(33):8823-8828. [40] TIWARI M K, CHATTERJEE C. Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs)[J]. Journal of Hydrology, 2010, 382(1/2/3/4):20-33. [41] LEENDERTSE J J, GRITTON E C. A water-quality simulation model for well mixed estuaries and coastal seas[M]. Santa monica, California, 1970. [42] JIANG R, WANG Y S. Modeling the ecosystem response to summer coastal upwelling in the northern South China Sea[J]. Oceanologia, 2018, 60(1):32-51. [43] 管卫兵,王丽娅,许东峰.珠江河口氮和磷循环及溶解氧的数值模拟Ⅰ模式建立[J].海洋学报, 2003, 25(1):52-60. [44] 朴香花,周集体,项学敏,等. NH3-N在大连湾的水环境行为模拟研究[J].海洋环境科学, 2006, 25(2):54-57. [45] CHEN N W, WANG J, LIU X, et al. Exploring seasonal and annual nitrogen transfer and ecological response in river-coast continuums based on spatially explicit models[J]. Journal of Geophysical Research:Biogeosciences, 2022, 127(1):e2021JG006634. [46] ARNDT S, LACROIX G, GYPENS N, et al. Nutrient dynamics and phytoplankton development along an estuary-coastal zone continuum:a model study[J]. Journal of Marine Systems, 2011, 84(3/4):49-66. [47] POWLEY H R, KROM M D, CAPPELLEN P V. Understanding the unique biogeochemistry of the Mediterranean Sea:insights from a coupled phosphorus and nitrogen model[J]. Global Biogeochemical Cycles, 2017, 31(6):1010-1031. [48] ZHANG J, ZHANG G S, BI Y F, et al. Nitrogen species in rainwater and aerosols of the Yellow and East China seas:effects of the East Asian monsoon and anthropogenic emissions and relevance for the NW Pacific Ocean[J]. Global Biogeochemical Cycles, 2011, 25(3):1-14. [49] TAKETANI F, AITA M N, YAMAJI K, et al. Seasonal response of north western pacific marine ecosystems to deposition of atmospheric inorganic nitrogen compounds from East Asia[J]. Scientific Reports, 2018, 8(1):1-9. [50] KELLY J T, BHAVE P V, NOLTE C G, et al. Simulating emission and chemical evolution of coarse sea-salt particles in the Community Multiscale Air Quality (CMAQ) model[J]. Geoscientific Model Development, 2010, 3(1):257-273. [51] LIU Y M, ZHANG S T, FAN Q, et al. Accessing the impact of sea-salt emissions on aerosol chemical formation and deposition over pearl river delta, China[J]. Aerosol and Air Quality Research, 2015, 15(6):2232-2245. [52] WEI X L, BAILEY R T, RECORDS R M, et al. Comprehensive simulation of nitrate transport in coupled surface-subsurface hydrologic systems using the linked SWAT-MODFLOW-RT3D model[J]. Environmental Modelling&Software, 2019, 122:104242. [53] ANDERSON R, KESHWANI D, GURU A, et al. An integrated modeling framework for crop and biofuel systems using the DSSAT and GREET models[J]. Environmental Modelling&Software, 2018, 108:40-50. [54] BUA X Q, LIN G P, SHEN X B, et al. Numerical simulation of aircraft thermal anti-icing system based on a tight-coupling method[J]. International Journal of Heat and Mass Transfer, 2020, 148:119061. [55] XIANG Z C, BAILEY R T, NOZARI S, et al. DSSAT-MODFLOW:a new modeling framework for exploring groundwater conservation strategies in irrigated areas[J]. Agricultural Water Management, 2020, 232:106033. [56] MATHEW M M, RAO N S, MANDLA V R. Development of regression equation to study the Total Nitrogen, Total Phosphorus and Suspended Sediment using remote sensing data in Gujarat and Maharashtra coast of India[J]. Journal of Coast Conservation, 2017, 21:917-927. [57] CAI X M. Implementation of holistic water resources-economic optimization models for river basin management-Reflective experiences[J]. Environmental Modelling and Software, 2008, 23(1):2-18. [58] 吴迪,王菊英,马德毅,等.基于PSR框架的典型海湾富营养化综合评价方法研究[J].海洋湖沼通报, 2011(1):131-136. [59] 庞文博,张秋丰,陈燕珍,等.基于PSR模型和层次分析法的渤海湾天津近岸海域富营养化评价[J].海洋湖沼通报, 2020(6):111-117. [60] AGUIRRE-RUBÍ J, LUNA-ACOSTA A, ORTIZ-ZARRAGOITIA M, et al. Assessment of ecosystem health disturbance in mangrove-lined Caribbean coastal systems using the oyster Crassostrea rhizophorae as sentinel species[J]. Science of the Total Environment, 2017, 618:718-735. [61] CARPENTER K E, JOHNSON J M, BUCHANAN C. An index of biotic integrity based on the summer polyhaline zooplankton community of the Chesapeake Bay[J]. Marine Environmental Research, 2006, 62:165-180. [62] VAN LOON W, BOON A R, GITTENBERGER A, et al. Application of the benthic ecosystem quality index 2 to benthos in dutch transitional and coastal waters[J]. Journal of Sea Research, 2015, 103:1-13. [63] 孙永坤,杨光,李超伦,等.胶州湾浮游动物生物完整性指数的建立[J].海洋科学, 2015, 39(10):1-7. [64] WANG Y F, ZHAO H Y, LI L Y, et al. Carbon dioxide emission drivers for a typical metropolis using input-output structural decomposition analysis[J]. Energy Policy, 2013, 58:312-318. [65] HUONG D T T, HA N T T, DO KHANH G, et al. Sustainability assessment of coastal ecosystems:DPSIR analysis for beaches at the northeast coast of Vietnam[J]. Environment, Development and Sustainability, 2020,24(4):5032-5051. [66] 朱静,陈新永,王靖飞,等.海洋环境容量研究进展及计算方法概述[J].水科学与工程技术, 2009(4):8-11. [67] SUN L, WANG J, ZHANG H F, et al. The characteristics and mechanism of changes in the marine environmental capacity of the estuaries of haizhou bay in northern jiangsu from 2006 to 2016[J]. Journal of Marine Science and Engineering, 2020, 8(10), 787. [68] SONG J Y, GRAMIG B M, CIBIN R, et al. Integrated economic and environmental assessment of cellulosic biofuel production in an agricultural watershed[J]. Bioenergy Research, 2017, 10(2):509-524. [69] GRAMIG B M, REELING C J, CIBIN R, et al. Environmental and economic trade-offs in a watershed when using corn stover for bioenergy[J]. Environmental Science&Technology, 2013, 47(4):1784-1791. [70] 吕永龙,王一超,苑晶晶,等.可持续生态学[J].生态学报, 2019, 39(10):3401-3415. [71] YAEGER M A, HOUSH M, CAI X, et al. An integrated modeling framework for exploring flow regime and water quality changes with increasing biofuel crop production in the U.S.Corn Belt[J]. Water Resources Research, 2014, 50(12):9385-9404. [72] DU E, TIAN Y, CAI X M, et al. Exploring spatial heterogeneity and temporal dynamics of human-hydrological interactions in large river basins with intensive agriculture:a tightly coupled, fully integrated modeling approach[J]. Journal of Hydrology, 2020, 591:125313. [73] NOËL P H, CAI X M. On the role of individuals in models of coupled human and natural systems:lessons from a case study in the Republican River Basin[J]. Environmental Modelling&Software, 2017, 92:1-16. [74] LINDKVIST E, WIJERMANS N, DAW T M, et al. Navigating complexities:agent-based modeling to support research, governance, and management in small-scale fisheries[J]. Frontiers in Marine Science, 2020, 6:1-12.
点击查看大图
计量
- 文章访问数: 628
- HTML全文浏览量: 60
- PDF下载量: 14
- 被引次数: 0