CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数值模拟在可渗透反应墙设计中的应用研究进展

郑凯旋 黄俊龙 罗兴申 王洪涛 陈坦

郑凯旋, 黄俊龙, 罗兴申, 王洪涛, 陈坦. 数值模拟在可渗透反应墙设计中的应用研究进展[J]. 环境工程, 2022, 40(6): 22-30. doi: 10.13205/j.hjgc.202206003
引用本文: 郑凯旋, 黄俊龙, 罗兴申, 王洪涛, 陈坦. 数值模拟在可渗透反应墙设计中的应用研究进展[J]. 环境工程, 2022, 40(6): 22-30. doi: 10.13205/j.hjgc.202206003
ZHENG Kaixuan, HUANG Junlong, LUO Xingshen, WANG Hongtao, CHEN Tan. APPLICATION PROGRESS OF NUMERICAL SIMULATION IN PERMEABLE REATIVE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 22-30. doi: 10.13205/j.hjgc.202206003
Citation: ZHENG Kaixuan, HUANG Junlong, LUO Xingshen, WANG Hongtao, CHEN Tan. APPLICATION PROGRESS OF NUMERICAL SIMULATION IN PERMEABLE REATIVE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 22-30. doi: 10.13205/j.hjgc.202206003

数值模拟在可渗透反应墙设计中的应用研究进展

doi: 10.13205/j.hjgc.202206003
基金项目: 

国家重点研发计划"场地土壤污染成因与治理技术专项——固体废物填埋场地土壤污染风险管控与净化技术"(2018YFC1802306)

详细信息
    作者简介:

    郑凯旋(1995-),男,博士研究生,主要研究方向为渗滤液污染地下水修复与模拟。zhengkx18@mails.tsinghua.edu.cn

    通讯作者:

    王洪涛(1960-),男,博士,教授,主要研究方向为污染场地治理和多孔介质污染物迁移模拟。htwang@tsinghua.edu.cn

    陈坦(1986-),男,博士,副教授,主要研究方向为污染场地调查与修复。chentan05@tsinghua.org.cn

APPLICATION PROGRESS OF NUMERICAL SIMULATION IN PERMEABLE REATIVE

  • 摘要: 可渗透反应墙(PRB)是一种高效的地下水污染原位修复技术。数值模拟方法有助于评估在不同参数(如尺寸、安装位置和朝向、渗透系数等)下的PRB性能,常作为PRB工程设计和长期运行的基础。归纳总结了典型地下水模型和软件在PRB设计中的应用特点,梳理了国内外数值模拟方法在PRB工程设计、寿命评估和参数优化等方面的应用现状,探讨了数值模拟在PRB技术中的应用前景和重点研究方向,以期为我国PRB技术的推广应用提供参考。
  • [1] GAVASKAR A R, GUPTA N, SASS B, et al. Permeable Barriers for Groundwater Remediation[M]. Battelle Press, Columbus, OH (United States), 1998.
    [2] PULS R W. Permeable Reactive Barrier Technologies for Contaminant Remediation[M]. USEPA, 1998:600.
    [3] QUINTON G E, BUCHANAN JR R J, ELLIS D E, et al. A method to compare groundwater cleanup technologies[J]. Remediation Journal, 1997, 7(4):7-16.
    [4] REETER C, CHAO S, GAVASKAR A. Permeable reactive wall remediation of chlorinated hydrocarbons in groundwater[R]. Environmental Security Technology Certification Program Office (DOD) Arlington Va, 1999.
    [5] PAINTER B D. Optimisation of permeable reactive barrier systems for the remediation of contaminated groundwater[D]. Christcharch:Lincoln University, 2005.
    [6] ALI A F, ABD ALI Z T. Sustainable use of concrete demolition waste as reactive material in permeable barrier for remediation of groundwater:batch and continuous study[J]. Journal of Environmental Engineering, 2020, 146(7):04020048.
    [7] FALCIGLIA P P, GAGLIANO E, BRANCATO V, et al. Microwave based regenerating permeable reactive barriers (MW-PRBs):proof of concept and application for Cs removal[J]. Chemosphere, 2020, 251:126582.
    [8] FAISAL A A, ABBAS T R, JASSAM S H. Removal of zinc from contaminated groundwater by zero-valent iron permeable reactive barrier[J]. Desalination and Water Treatment, 2015, 55(6):1586-1597.
    [9] GILLHAM R W, VOGAN J, GUI L, et al. Iron barrier walls for chlorinated solvent remediation[M]//In Situ Remediation of Chlorinated Solvent Plumes. Springer, 2010:537-571.
    [10] 左亚会.我国地下水数值模拟的研究进展及应用现状[J].珠江现代建设, 2017(5):9-12.
    [11] XU Z G, WU Y Q, YU F. A three-dimensional flow and transport modeling of an aquifer contaminated by perchloroethylene subject to multi-PRB remediation[J]. Transport in Porous Media, 2012, 91(1):319-337.
    [12] OBIRI-NYARKO F, KWIATKOWSKA J, MALINA G, et al. Geochemical modelling for predicting the long-term performance of zeolite-PRB to treat lead contaminated groundwater[J]. Journal of Contaminant Hydrology, 2015, 177/178:76-84.
    [13] SANTISUKKASAEM U, OLAWUYI F, OYE P, et al. Artificial neural network (ANN) for evaluating permeability decline in permeable reactive barrier (PRB)[J]. Environmental Processes, 2015, 2(2):291-307.
    [14] HOU D Y, LI F S. Complexities surrounding China's soil action plan[J]. Land Degradation&Development, 2017, 28(7):2315-2320.
    [15] HILL M C, BANTA E R, HARBAUGH A W, et al. MODFLOW-2000, the U.S. Geological Survey modular ground-water model; user guide to the observation, sensitivity, and parameter-estimation processes and three post-processing programs. US Geological Survey Open-File Report 00-184[R]. U.S. Geological Survey, 2000.
    [16] 卢丹美.地下水数值模型和软件的特点及在我国的应用现状[J].中国水运(下半月), 2013(1):107-109.
    [17] HARBAUGH A W. MODFLOW-2005:the U.S. Geological Survey modular ground-water model-the ground-water flow process[J]. Techniques and Methods, 2005.
    [18] 康明亮,韩东梅,GEWIRIZ Océane.计算机模拟在化学理论与实验教学中的应用[J].大学化学, 2016, 31(10):23-28.
    [19] POLLPCK D W. User guide for MODPATH Version 7:A Particle-Tracking Model for MODFLOW[R]. 2016-1086, U.S. Geological Survey, 2016.
    [20] HARBAUGH A W. A computer program for calculating subregional water budgets using results from the U.S. Geological Survey Modular Three-Dimensional Finite-Difference Ground-Water Flow Model[R]. 90-392, U.S. Geological Survey; Books and Open-File Reports Section, 1990.
    [21] KIPP K L. HST3D:a computer code for simulation of heat and solute transport in three-dimensional ground-water flow systems[R]. Water-Resources Investigations Report, 86-4095, U.S. Geological Survey, 1987, 86-4095.
    [22] ZHENG C. MT3D:A Modular Three-Dimensional Transport Model for Simulation of Advection, Dispersion and Chemical Reactions of Contaminants in Groundwater Systems[M]. SS Papadopulos&Associates, 1992.
    [23] ZHENG C, WANG P P. MT3DMS:a Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems; Documentation and User's Guide[G]. Environmental Laboratory (US), 1999.
    [24] CLEMENT T P. A Modular Computer Code for Simulating Reactive Multi-Species Transport in 3-dimensional Groundwater Systems[R]. Pacific Northwest National Lab. Richland, WA (US), 1999.
    [25] LIANG L, SULLIVAN A B, WEST O R, et al. Predicting the precipitation of mineral phases in permeable reactive barriers[J]. Environmental Engineering Science, 2003, 20(6):635-653.
    [26] BENNER S G, BLOWES D W, GLOULD W D, et al. Geochemistry of a permeable reactive barrier for metals and acid mine drainage[J]. Environmental Science&Technology, ACS Publications, 1999, 33(16):2793-2799.
    [27] PROMMER H, AZIZ L H, BOLANO N, et al. Modelling of geochemical and isotopic changes in a column experiment for degradation of TCE by zero-valent iron[J]. Journal of Contaminant Hydrology, 2008, 97(1/2):13-26.
    [28] KWONG S, SAMLL J, TAHAR B. Modelling the remediation of contaminated groundwater using zero-valent iron barrier[J]. Proceeding of WM, 2007,7.
    [29] PARKHURST D L, KIPP K L, CHARLTON S R. PHAST Version 2:a program for simulating groundwater flow, solute transport, and multicomponent geochemical reactions[J]. US Geological Survey Techniques and Methods, 2010, 6:A35.
    [30] MAYER. Reactive Transport Modeling of An In Situ Reactive Barrier for the Treatment of Hexavalent Chromium and Trichloroethylene in Groundwater[EB/OL]. 2001/2020-12-11. https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2001WR000234.
    [31] YANG C B, SAMPER J, MOLINERO J. Inverse microbial and geochemical reactive transport models in porous media[J]. Physics and Chemistry of the Earth, 2008, 33(14/15/16):1026-1034.
    [32] 谭勇,梁婕,曾光明,等.基于数值模拟和响应面法的PRB设计影响研究[J].环境工程学报, 2016, 10(2):655-661.
    [33] HEMSI P S, SHACKELFORD C D. An evaluation of the influence of aquifer heterogeneity on permeable reactive barrier design:Permeable Reactive Barrier Design[J]. Water Resources Research, 2006, 42(3).
    [34] JIRASKO D, VANICEK I. The interaction of groundwater with permeable reactive barrier (PRB)[C]//Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering:The Academia and Practice of Geotechnical Engineering, Alexandria:IOS Press, 2009:2473-2478.
    [35] BARMA S D. Development of groundwater management model linking GMS with GA-PSO-based Hybrid Algorithm[J]. Intermational Journal of Engineering Science and Technology, 2010, 2(12):7297-7300.
    [36] RAD P R, FAZLALI A. Optimization of permeable reactive barrier dimensions and location in groundwater remediation contaminated by landfill pollution[J]. Journal of Water Process Engineering, 2020, 35:101196.
    [37] CHUNG Y W, KIM J, KONG S H. Performance prediction of permeable reactive barriers by three-dimensional groundwater flow simulation[J]. International Journal of Environmental Science and Development, 2011:138-141.
    [38] MAAMOUN I, ELJAMAL O, FALYOUNA O, et al. Multi-objective optimization of permeable reactive barrier design for Cr (Ⅵ) removal from groundwater[J]. Ecotoxicology and Environmental Safety, 2020, 200:110773.
    [39] DIERSCH H J G. FEFLOW:Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media[M]. Springer Science&Business Media, 2013.
    [40] BAKIR A. Development of a Seaweed-based Fixed-bed Sorption Column for the Removal of Metals in a Waste Stream[D]. Waterford Institute of Technology, 2010.
    [41] SACHDEV S, PAREEK S, MAHADEVAN B, et al. Modeling and simulation of single phase fluid flow and heat transfer in packed beds[C]//Proceedings of the 2012 COMSOL conference in Bangalore, 2012.
    [42] MASOOD Z B, ABD ALI Z T. Numerical modeling of two-dimensional simulation of groundwater protection from lead using different sorbents in permeable barriers[J]. Environmental Engineering Research, 2020, 25(4):605-613.
    [43] POWELL R M, BLOWES D W, GILLHAM R W, et al. Permeable Reactive Barrier Technologies for Contaminant Remediation[R]. US EPA, 1998, 600.
    [44] CRAIG J R, RABIDEAU A J, SURIBHATLA R. Analytical expressions for the hydraulic design of continuous permeable reactive barriers[J]. Advances in Water Resources, 2006, 29(1):99-111.
    [45] GAVASKAR A R. Design and construction techniques for permeable reactive barriers[J]. Journal of Hazardous Materials, 1999, 68(1):41-71.
    [46] KOBER R, SCHAFER D, EBERT M, et al. Coupled in situ reactors using Fe and activated carbon for the remediation of complex contaminant mixtures in groundwater[J]. 2002(275):435-439.
    [47] ITRC T. Permeable reactive barrier:technology update[Z]. The Interstate Technology&Regulatory Council PRB, 2011.
    [48] NAIDU R, BIRKE V. Permeable Reactive Barrier:Sustainable Groundwater Remediation[M]. Boca Raton:CRC Press, 2018.
    [49] ELDER C R, BENSON C H, EYKHOLT G R. Effects of heterogeneity on influent and effluent concentrations from horizontal permeable reactive barriers[J]. Water Resources Research, 2002, 38(8):27-1-27-19.
    [50] PULS R W. Long-term performance of permeable reactive barriers:lessons learned on design, contaminant treatment, longevity, performance monitoring and cost-an overview[M]//Soil and Water Pollution Monitoring, Protection and Remediation. Springer, 2006:221-229.
    [51] KLAMMLER H, HATFIELD K. Analytical solutions for flow fields near continuous wall reactive barriers[J]. Journal of Contaminant Hydrology, 2008, 98(1):1-14.
    [52] SINGH R, CHAKMA S, BIRKE V. Numerical modelling and performance evaluation of multi-permeable reactive barrier system for aquifer remediation susceptible to chloride contamination[J]. Groundwater for Sustainable Development, 2020, 10:100317.
    [53] THAKUR A K, VITHANAGE M, DAS D B, et al. A review on design, material selection, mechanism, and modelling of permeable reactive barrier for community-scale groundwater treatment[J]. Environmental Technology&Innovation, 2020, 19:100917.
    [54] 吕永高,蔡五田,杨骊,等.中试尺度下可渗透反应墙位置优化模拟:以铬污染地下水场地为例[J].水文地质工程地质, 2020, 47(5):189-195.
    [55] NARDO A D, BORTONE I, NATALE M D, et al. A heuristic procedure to optimize the design of a permeable reactive barrier for in situ groundwater remediation[J]. Adsorption Science&Technology, 2014, 32(2/3):125-140.
    [56] ZINGELMANN M, SCHIPEK M, BITTNER A. Planning of reactive barriers-an integrated, comprehensive but easy to understand modeling approach[M]//Uranium-Past and Future Challenges. Springer, 2015:739-744.
    [57] MEDAWELA S, INDRARAINA B. Computational modelling to predict the longevity of a permeable reactive barrier in an acidic floodplain[J]. Computers and Geotechnics, Elsevier, 2020, 124:103605.
    [58] SURIBHATLA R M, JANKOVIC I. Numerical modeling of groundwater flow and transport using analytic element method for highly heterogeneous anisotropic formations with estimation of effective hydraulic conductivity[J]. AGUFM, 2006, 2006:H23C-1524.
    [59] BIRKE V, BURMEIER H, JEFFERIS S, et al. Permeable reactive barriers (PRBs) in Europe:potentials and expectations[J]. Italy Journal Engineering Geology Environment, 2007, 1:1-8.
    [60] 陈梦舫.地下水可渗透反应墙修复技术原理、设计及应用[M].北京:科学出版社, 2017.
    [61] KALINOVICH I, RUTTER A, POLAND J S, et al. Remediation of PCB contaminated soils in the Canadian Arctic:excavation and surface PRB technology[J]. Science of the Total Environment, Elsevier, 2008, 407(1):53-66.
    [62] LIU S J, LI X G, WANG H X. Hydraulics analysis for groundwater flow through permeable reactive barriers[J]. Environmental Modeling&Assessment, 2011, 16(6):591-598.
    [63] CHANDRAPPA R, DAS D B. Sustainable Water Engineering:Theory and Practice[M]. John Wiley&Sons, 2014.
    [64] KACIMOV A R, KLAMMLER H, ILYINSKII N, et al. Constructal design of permeable reactive barriers:groundwater-hydraulics criteria[J]. Journal of Engineering Mathematics, Springer, 2011, 71(4):319-338.
    [65] BORTONE I, DI NARDO A, DI NATALE M, et al. Remediation of an aquifer polluted with dissolved tetrachloroethylene by an array of wells filled with activated carbon[J]. Journal of Hazardous Materials, 2013, 260:914-920.
    [66] GUPTA N, FOX T C. Hydrogeologic modeling for permeable reactive barriers[J]. Journal of Hazardous Materials, 1999, 68(1):19-39.
    [67] HENDERSON A D, DEMOND A H. Long-term performance of zero-valent iron permeable reactive barriers:a critical review[J]. Environmental Engineering Science, 2007, 24(4):401-423.
    [68] KHAN F I, HUSAIN T, HEJAZI R. An overview and analysis of site remediation technologies[J]. Journal of Environmental Management, 2004, 71(2):95-122.
    [69] HIGGINS M R, OLSON T M. Life-cycle case study comparison of permeable reactive barrier versus pump-and-treat remediation[J]. Environmental Science&Technology, 2009, 43(24):9432-9438.
    [70] WEBER A, RUHL A S, AMOS R T. Investigating dominant processes in ZVI permeable reactive barriers using reactive transport modeling[J]. Journal of Contaminant Hydrology, 2013, 151:68-82.
    [71] JOHNSON R L, THOMS R B, OBRIEN JOHNSON R, et al. Field evidence for flow reduction through a zero-valent iron permeable reactive barrier[J]. Groundwater Monitoring&Remediation, 2008, 28(3):47-55.
    [72] FLURY B, FROMMER J, EGGENBERGER U, et al. Assessment of long-term performance and chromate reduction mechanisms in a field scale permeable reactive barrier[J]. Environmental Science&Technology, 2009, 43(17):6786-6792.
    [73] LI L, BENSON C H, LAWSON E M. Impact of mineral fouling on hydraulic behavior of permeable reactive barriers[J]. Ground Water, 2005, 43(4):582-596.
    [74] AFSHARI A, SHADIZADEH S R, RIAHI M A. The use of artificial neural networks in reservoir permeability estimation from well logs:focus on different network training algorithms[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 2014, 36(11):1195-1202.
    [75] DAS D B, THIRAKULCHAYA T, DEKA L, et al. Artificial neural network to determine dynamic effect in capillary pressure relationship for two-phase flow in porous media with micro-heterogeneities[J]. Environmental Processes, 2015, 2(1):1-18.
    [76] WILKIN R T, PILS R W, SEWELL G W. Long-term performance of permeable reactive barriers using zero-valent iron:Geochemical and microbiological effects[J]. Groundwater, 2003, 41(4):493-503.
    [77] LI L, BENSON C H, LAWSON E M. Modeling porosity reductions caused by mineral fouling in continuous-wall permeable reactive barriers[J]. Journal of Contaminant Hydrology, 2006, 83(1):89-121.
    [78] JEEN S W, BLOWES D W, GILLHAM R W. Performance evaluation of granular iron for removing hexavalent chromium under different geochemical conditions[J]. Journal of Contaminant Hydrology, 2008, 95(1/2):76-91.
    [79] KOUZNETSOVA I, BAYER P, EBERT M, et al. Modelling the long-term performance of zero-valent iron using a spatio-temporal approach for iron aging[J]. Journal of Contaminant Hydrology, 2007, 90(1):58-80.
    [80] HENDERSON A D, DEMOND A H. Impact of solids formation and gas production on the permeability of ZVI PRBs[J]. Journal of Environmental Engineering, 2011, 137(8):689-696.
    [81] CARNIATO L, SCHOUPS G, SEUNTIENS P, et al. Predicting longevity of iron permeable reactive barriers using multiple iron deactivation models[J]. Journal of Contaminant Hydrology, 2012, 142/143:93-108.
    [82] MORRISON S. Performance evaluation of a permeable reactive barrier using reaction products as tracers[J]. Environmental Science&Technology, 2003, 37(10):2302-2309.
    [83] JEEN S W, MAYER K U, GILLHAM R W, et al. Reactive transport modeling of trichloroethene treatment with declining reactivity of iron[J]. Environmental Science&Technology, 2007, 41(4):1432-1438.
    [84] JEEN S W, GILLHAM R W, PRZEPIORA A. Predictions of long-term performance of granular iron permeable reactive barriers:field-scale evaluation[J]. Journal of Contaminant Hydrology, 2011, 123(1/2):50-64.
    [85] OBIRI-NYARKO F, GRAJALES-MESA S J, MALINA G. An overview of permeable reactive barriers for in situ sustainable groundwater remediation[J]. Chemosphere, 2014, 111:243-259.
    [86] HOSSEINI S M, ATAIE-ASHTIANI B, KHOLGHI M. Bench-scaled nano-Fe0 permeable reactive barrier for nitrate removal[J]. Groundwater Monitoring&Remediation, 2011, 31(4):82-94.
    [87] ELJAMAL O, THOMPSON I P, MAAMOUN I, et al. Investigating the design parameters for a permeable reactive barrier consisting of nanoscale zero-valent iron and bimetallic iron/copper for phosphate removal[J]. Journal of Molecular Liquids, 2020, 299:112144.
    [88] POLONSKI M, PAWLUK K, RYBKA I. Optimization Model for the Design of Multi-layered Permeable Reactive Barriers[C]//IOP Conference Series:Materials Science and Engineering, 2017, 245:072017.
    [89] PAWLUK K, POLONSKI M, WRZESINSKI G, et al. Two-Objective Optimization for Optimal Design of the Multilayered Permeable Reactive Barriers[C]//IOP Conference Series:Materials Science and Engineering, 2019, 471:112044.
    [90] MOHAMMED M. Effect of Geological Heterogeneity on Permeable Reactive Barriers in Groundwater Remediation[D]. United States——Missouri:University of Missouri-Kansas City, 2006.
    [91] TAN Y, LIANG J, ZENG G M, et al. Effects of PRB design based on numerical simulation and response surface methodology[J]. Chinese Journal of Environmental Engineering, 2016, 10(2):655-661.
    [92] BENNER S G, BLOWES D W, MOLSON J W H. Modeling preferential flow in reactive barriers:implications for performance and design[J]. Ground Water, 2001, 39(3):371-379.
    [93] ELDER C R. Evaluation and design of permeable reactive barriers amidst heterogeneity[D]. Madison:The University of Wisconsin, 2001.
  • 加载中
计量
  • 文章访问数:  253
  • HTML全文浏览量:  56
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-16
  • 网络出版日期:  2022-09-01
  • 刊出日期:  2022-09-01

目录

    /

    返回文章
    返回