SOURCE IDENTIFICATION OF PHOSPHORUS IN VARIOUS DISTURBED RIVERS BASED ON LAM MODEL
-
摘要: 针对高强度复杂人类干扰河流磷来源难以定量解析的问题,构建基于流量与污染物浓度关系模式的污染源解析模型,定量分析多干扰类型河流磷的点源和非点源负荷与时间贡献。以滇池流域的源头河流、水库干扰河流、水库-调水复合干扰河流等为例,采用LAM源解析模型建立了河流磷浓度与流量的响应关系,分析了主要河流磷的源贡献结构与时空分布特征。结果表明:2018年非点源是滇池主要入湖河流磷的主要贡献源,非点源负荷占比为53%~100%,汛期与全年差异较小;从污染源主导时间看,点源是宝象河和盘龙江大花桥-德胜桥段时间占比最高的污染源,表明低流量期间点源控制对改善水质仍然具有十分重要的意义。研究结果可为我国多种人为干扰类型河流的磷污染源解析提供方法借鉴与指导。Abstract: It is generally difficult to quantify the phosphorus source of high-intensity and complex human interference rivers,so a pollution source apportionment model based on the relationship between flow and pollutant concentration was constructed to identify the point source and non-point source load and time contribution of river phosphorus.Taking the upstream river,river with reservoir and river with both reservoir and water transfer project in the Lake Dianchi Basin as the objects,the response relationship between river phosphorus concentration and flow was established by LAM model,and the source contribution structure and spatiotemporal distribution of phosphorus in main rivers were analyzed.Results showed that non-point source was the major source of phosphorus in the main rivers entering the Dianchi Lake in 2018,and the non-point source load accounted for 53%~100%,with a negligible difference between flood season and all year round;as for the dominant time of pollution sources,point sources account for the highest time proportion in the Baoxiang River and the Dahuaqiao-Deshengqiao section of the Panlong River,indicating that point source control was still of great significance to improve water quality in low flow seasons.The results can provide reference and guidance for identifying phosphorus pollution sources in many human disturbance rivers in China.
-
Key words:
- source apportionment /
- receptor model /
- load apportionment model (LAM) /
- nutrients /
- human interference
-
[1] 倪兆奎,王圣瑞,金相灿,等.云贵高原典型湖泊富营养化演变过程及特征研究[J].环境科学学报, 2011,31(12):2681-2689. [2] BOWES M J, SMITH J T, JARVIE H P, et al. Modelling of phosphorus inputs to rivers from diffuse and point sources[J]. Science of the Total Environment, 2008,395(2/3):125-138. [3] LIANG Z Y, SORANNO P A, WAGNER T. The role of phosphorus and nitrogen on chlorophyll a:evidence from hundreds of lakes[J]. Water Research, 2020,185:116236. [4] 秦延文,马迎群,王丽婧,等.长江流域总磷污染:分布特征·来源解析·控制对策[J].环境科学研究, 2018,31(1):9-14. [5] 牛勇,牛远,王琳杰,等. 2009-2018年太湖大气湿沉降氮磷特征对比研究[J].环境科学研究, 2020,33(1):122-129. [6] 蔡梅,陆志华,王元元,等.太湖不同介质中磷的污染特征及其治理启示[J].环境科学, 2021.DOI: 10.13227/j.hjkx.202108262 [7] 黄国兰,萧航.化学质量平衡法在水体污染物源解析中的应用[J].环境科学, 1999,20(6):14-17. [8] 刘京,刘廷良,刘允,等.地表水环境自动监测技术应用与发展趋势[J].中国环境监测, 2017,33(6):1-9. [9] BAI H, CHEN Y, WANG Y G, et al. Contribution rates analysis for sources apportionment to special river sections in Yangtze River Basin[J]. Journal of Hydrology, 2021,600:126519. [10] 叶匡旻,孟凡生,张铃松,等.松花江流域氮时空分布特征及源解析研究[J].环境科学研究, 2020,33(4):901-910. [11] 纪晓亮,舒烈琳,陈铮,等.楠溪江硝态氮来源定量识别及其不确定性分析[J].中国环境科学, 2021,41(8):3784-3791. [12] 孙亚乔,王晓冬,校康,等.淡水环境中氮污染同位素示踪的研究进展[J].生态环境学报, 2020,29(8):1693-1702. [13] 杜展鹏,王明净,严长安,等.基于绝对主成分-多元线性回归的滇池污染源解析[J].环境科学学报, 2020,40(3):1130-1137. [14] 陈诗文,袁旭音,金晶,等.西苕溪支流河口水体营养盐的特征及源贡献分析[J].环境科学, 2016,37(11):4179-4186. [15] BOWES M J, JARVIE H P, NADEN P S, et al. Identifying priorities for nutrient mitigation using river concentration-flow relationships:the Thames basin, UK[J]. Journal of Hydrology, 2014,517:1-12. [16] CHEN D J, DAHLGREN R A, LU J. A modified load apportionment model for identifying point and diffuse source nutrient inputs to rivers from stream monitoring data[J]. Journal of Hydrology, 2013,501:25-34. [17] GREENE S, TAYLOR D, MCELARNEY Y R, et al. An evaluation of catchment-scale phosphorus mitigation using load apportionment modelling[J]. Science of the Total Environment, 2011,409(11):2211-2221. [18] CROCKFORD L, O'RIORDAIN S, TAYLOR D, et al. The application of high temporal resolution data in river catchment modelling and management strategies[J]. Environmental Monitoring and Assessment, 2017,189(9):461. [19] JARVIE H P, SHARPLEY A N, SCOTT J T, et al. Within-river phosphorus retention:accounting for a missing piece in the watershed phosphorus puzzle[J]. Environmental Science&Technology, 2012,46(24):13284-13292. [20] RATTAN K J, BOWES M J, YATES A G, et al. Evaluating diffuse and point source phosphorus inputs to streams in a cold climate region using a load apportionment model[J]. Journal of Great Lakes Research, 2021,47(3):761-772. [21] 贺克雕,高伟,段昌群,等.滇池、抚仙湖、阳宗海长期水位变化(1988-2015年)及驱动因子[J].湖泊科学, 2019,31(5):1379-1390. [22] 李蒙,谢国清,鲁韦坤,等.气象条件对滇池水华分布的影响[J].气象科学, 2011,31(5):639-645. [23] 何云玲,熊巧利,罗贤,等.基于NDVI滇池水华特征的时空变化研究[J].生态环境学报, 2019,28(3):555-563. [24] 冯秋园,王殊然,刘学勤,等.滇池浮游植物群落结构的时空变化及与环境因子的关系[J].北京大学学报(自然科学版), 2020,56(1):184-192. [25] RUNKEL R L, CRAWFORD C G, COHN T A. Load Estimator (LOADEST):A FORTRAN Program for Estimating Constituent Loads in Streams and Rivers[EB/OL].https://pubs.usgs.gov/tm/2005/tm4A5/pdf/508final.pdf. 2021-1-3. [26] SHRESTHA S, GUNAWARDANA S K, PIMAN T, et al. Assessment of the impact of climate change and mining activities on streamflow and selected metal's loading in the Chindwin River, Myanmar[J]. Environmental Research, 2020,181:108942. [27] GAO J G, WHITE M J, BIEGER K, et al. Design and development of a Python-based interface for processing massive data with the LOAD ESTimator (LOADEST)[J]. Environmental Modelling&Software, 2021,135:104897. [28] 严长安,杜展鹏,姚波,等.滇池宝象河流域氮磷流失空间格局解析[J].环境科学研究, 2020,33(12):2695-2704. [29] 金亚楠,张柏发,郝韵,等.基于LOADEST模型和小波变换的河流氮磷污染动态分析[J].浙江农业学报, 2020,32(9):1692-1701. [30] 程国微,杜展鹏,严长安,等.水质监测频率与极端气候对高原湖泊入湖河流氮磷通量估算的影响[J].环境科学学报, 2020,40(11):3982-3989.
点击查看大图
计量
- 文章访问数: 210
- HTML全文浏览量: 45
- PDF下载量: 6
- 被引次数: 0