SOURCE TRACKING OF WASTEWATER DISCHARGE INTO RIVERS USING HYDRODYNAMIC DIFFUSION WAVE MODEL AND GENETIC ALGORITHM
-
摘要: 针对河道排污口人工排查成本高且难以做到实时性的问题,建立了基于水流扩散波模型和遗传算法的河道排口反问题溯源方法,并通过突发污染排放的设计算例和河流污染排放实际调查案例进行验证。结果表明:1)反问题模型能有效反演潜在的突发性大流量污染排放,包括排放位置、水量、排放起始时间和终止时间;经过多次运算反演结果的中位值与真实解几乎完全一致。2)对于日常排污口排查而言,该方法可通过合理的水文监测断面布设,准确识别出河流中潜在的多个排污口空间位置和排放水量。3)对于突发排放和日常排污口排查,溯源精度均可达到200 m以内;对应监测站点的布设距离为2 km。因此,该反问题模型可为未来基于在线数据的河道水下排污口动态监管提供技术参考。Abstract: On-site investigation of sewage outfalls connected to watercourses is labor-intensive,and real-time tracking is hard to be performed manually.Facing with this challenge,an inverse problem method to trace source location and sewage flow based on hydrodynamic diffusion wave model and the microbial genetic algorithm was developed.The developed method was verified with a hypothetical example of sudden wastewater discharge and a real investigation case of sewage discharges into a river.The study results showed that:1) for the tracking of sudden wastewater discharge in large quantity,the inverse problem model could estimate source parameters including source location,source flow rate,starting and ending time of discharge effectively.After multiple runs of modeling,the median values of inversed source parameters were almost identical to the real ones.2) for the routine investigation of sewage outfalls,the developed method could identify the locations and discharge amounts of potential multiple sewage sources accurately,through the rational layout of hydrologic monitoring stations.3) for either the tracking of sudden wastewater discharge or the routine investigation of sewage discharges,the sewage outfall could be located to a spatial grid resolution of fewer than 200 m using the inverse modeling,on condition that the monitoring stations were set up with a spatial interval of 2000 m.Therefore,the developed inverse model could provide a technical solution for dynamic monitoring of sewage outlets connected to rivers in the future,with the support of online data.
-
Key words:
- pollution source tracking /
- hydrodynamic model /
- genetic algorithm /
- inverse problem /
- water course
-
[1] XU Z X, XU J, YIN H L, et al. Urban river pollution control in developing countries[J]. Nature Sustainability, 2019, 2(3):158-160. [2] 徐祖信,张辰,李怀正.我国城市河流黑臭问题分类与系统化治理实践[J].给水排水, 2018, 44(10):1-5,39. [3] 吕清,徐诗琴,顾俊强,等.基于水纹识别的水体污染溯源案例研究[J].光谱学与光谱分析, 2016, 36(8):2590-2595. [4] MICHALAK A M, KITANIDIS P K. Estimation of historical groundwater contaminant distribution using the adjoint state method applied to geostatistical inverse modeling[J]. Water Resources Research, 2004, 40(8):8302-8313. [5] KEATS A, YEE E, LIEN F S. Bayesian inference for source determination with applications to a complex urban environment[J]. Atmospheric Environment, 2007, 41(3):465-479. [6] ZHENG X P, CHEN Z Q. Back-calculation of the strength and location of hazardous materials releases using the pattern search method[J]. Journal of Hazardous Materials, 2010, 183(1/2/3):474-481. [7] ZHOU Z T, TARTAKOVSKY D M. Markov Chain Monte Carlo with neural network surrogates:application to contaminant source identification[J]. Stochastic Environmental Research and Risk Assessment, 2021, 35(3):639-651. [8] 孙杰,章卫胜,荆立,等.基于进化算法和水质模型的河口污染物溯源方法[J].科学技术与工程, 2019, 19(14):384-390. [9] 辛小康,韩小波,李建,等.基于遗传算法的水污染事故污染源识别模型[J].水电能源科学, 2014, 32(7):52-55, 136. [10] GHANE A, MAZAHERI M, SAMANI J. Location and release time identification of pollution point source in river networks based on the Backward Probability Method[J]. Journal of Environmental Management, 2016, 180(15):164-171. [11] WANG J B, ZHAO J S, LEI X H, et al. New approach for point pollution source identification in rivers based on the backward probability method[J]. Environmental Pollution, 2018, 241:759-774. [12] 孙策,李传奇,白冰,等.基于贝叶斯方法的突发水污染事件溯源研究[J].中国农村水利水电, 2020(8):71-75, 81. [13] ZHU Y Y, CHEN Z, ASIF Z. Identification of point source emission in river pollution incidents based on Bayesian inference and genetic algorithm:inverse modeling, sensitivity, and uncertainty analysis[J]. Environmental Pollution, 2021, 285:117497-117505. [14] 芮孝芳.扩散波和线性扩散模型解析解的应用[J].华东水利学院学报, 1985,13(3):95-103. [15] PUSHPALATHA R, PERRIN C, MOINE N L, et al. A review of efficiency criteria suitable for evaluating low-flow simulations[J]. Journal of Hydrology, 2012, 420:171-182. [16] HUANG J, YIN H, CHAPRA S C, et al. Modelling dissolved oxygen depression in an urban river in China[J]. Water, 2017, 9:520-538.
点击查看大图
计量
- 文章访问数: 163
- HTML全文浏览量: 81
- PDF下载量: 12
- 被引次数: 0