SOURCE TRACKING OF WASTEWATER DISCHARGE INTO RIVERS USING HYDRODYNAMIC DIFFUSION WAVE MODEL AND GENETIC ALGORITHM
-
摘要: 预测模型是有效应对突发水污染事件的前提与基础。为了提高预测模型的准确性,提出了一种新的参数识别方法。首先从反问题与贝叶斯估计的视角构建突发水污染事件预测模型;然后在Metropolis-Hastings抽样方法的基础上,引入混沌理论、粒子群算法、微分进化算法等的思想,设计了一种新的参数识别方法,即IPSO-DE-MH算法;最后通过数值分析验证所设计方法的有效性和准确性。结果表明:新方法能较好地识别模型参数,为突发事件应急预测模型的快速构建提供了新思路。
-
关键词:
- 参数识别 /
- 粒子群算法 /
- 微分进化算法 /
- Metropolis-Hastings抽样方法 /
- 混沌理论
Abstract: The prediction model is the premise and foundation of effectively dealing with sudden water pollution accidents.To improve the accuracy of the prediction model,a new parameters identification method was proposed in this paper.This paper first built a prediction model from the perspective of the inverse problem and Bayesian,and then designed a new identification method based on the chaos theory,particle swarm optimization,differential evolution and Metropolis-Hastings sampling method,i.e.IPSO-DE-MH.Finally,the effectiveness and accuracy of the designed method were verified by numerical analysis.The results showed that the new method could better identify the model parameters,and provide a new idea for the construction of an emergency prediction model. -
[1] 史斌,王鹏,姜继平.基于高频在线水质监测数据异常预警的突发污染预警[J].中国环境科学, 2017, 37(11):4394-4400. [2] 杨海东,刘碧玉,黄建华.基于改进Bayesian-MCMC的突发水污染事件预测模型参数率定方法[J].控制与决策, 2018, 33(4):679-686. [3] 刘晓东,王珏.地表水污染源识别方法研究进展[J].水科学进展, 2020, 31(2):302-311. [4] EBERHART R C, KENNEDY J. A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya:IEEE, 1995, 39-43. [5] EBERHART R C, KENNEDY J. Particle swarm optimization[C]//Proceedings of the IEEE conference on Neural Network, IEEE, 1995,1942-1948. [6] 师蔚,阳喜成.基于粒子群优化算法的永磁电机热网络参数识别[J].电机与控制应用, 2019, 46(3):102-108. [7] INTISSAR K, TAOUFIK L, ANIS S, et al. Parameter identification of an activated sludge wastewater treatment process based on particle swarm optimization method[J]. Mathematical Problems in Engineering,2018, 2018:1-11. [8] 郭建青,李彦,王洪胜,等.粒子群优化算法在确定河流水质参数中的应用[J].水利水电科技进展, 2007, 27(6):1-5. [9] 袁君,陈贝,朱光灿.采用混沌粒子群优化算法的水质模型参数辨识[J].东南大学学报:自然科学版, 2009, 39(5):1018-1022. [10] 袁华,刘元会,郭建青,等.基于改进的粒子群优化算法确定河流水质参数[J].西北农林科技大学学报(自然科学版),2014,42(11):220-224. [11] 孟令群,郭建青.利用混沌粒子群算法确定河流水质模型参数[J].地球科学与环境学报, 2009, 31(2):169-172. [12] 袁帆,刘元会,郭建青.利用单纯形-粒子群算法识别二维河流水质参数[J].南水北调与水利科技, 2017, 15(4):193-197,202. [13] 纪广月.基于改进粒子群算法优化BP神经网络的西江水质预测研究[J].水动力学研究与进展(A辑),2020,35(5):567-574. [14] YANG H D, SHAO D G, LIU B Y, et al. Multi-point source identification of sudden water pollution accidents in surface waters based on differential evolution and Metropolis-Hastings-Markov Chain Monte Carlo[J]. Stochastic Environmental Research and Risk Assessment, 2016, 30(2):507-522. [15] 朱嵩,刘国华,毛根海,等.利用贝叶斯推理估计二维含源对流扩散方程参数[J].四川大学学报(工程科学版), 2008, 40(2):38-43. [16] ZHANG W, LIU J, CHO C, et al. A hybrid parameter identification method based on Bayesian approach and interval analysis for uncertain structures[J]. Mechanical Systems&Signal Processing, 2015, 60/61:853-865. [17] 孟红记,郑鹏,梅国晖,谢植.基于混沌序列的粒子群优化算法[J].控制与决策, 2004,21(3):263-266. [18] GHEISARI S, MEYBODI M R. BNC-PSO:structure learning of bayesian networks by particle swarm optimization[J]. Information Sciences, 2016, 348:272-289. [19] KENNEDY D A, DUKIC V, Dwyer G. Combining principal component analysis with parameter line-searches to improve the efficacy of Metropolis-Hastings MCMC[J]. Environmental and Ecological Statistics, 2015, 22(2):247-274. [20] STORN R,PRICE K. Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4):341-359. [21] YUN Y, NAKAYAMA H, YOON M. Generation of Pareto optimal solutions using generalized DEA and PSO[J]. Journal of Global Optimization, 2016, 64(1):49-61.
点击查看大图
计量
- 文章访问数: 153
- HTML全文浏览量: 54
- PDF下载量: 6
- 被引次数: 0