CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

废水生物脱氮过程中N2O排放数学模型研究进展

陈诗 彭来 徐一峰 梁川州 倪丙杰

陈诗, 彭来, 徐一峰, 梁川州, 倪丙杰. 废水生物脱氮过程中N2O排放数学模型研究进展[J]. 环境工程, 2022, 40(6): 97-106,122. doi: 10.13205/j.hjgc.202206013
引用本文: 陈诗, 彭来, 徐一峰, 梁川州, 倪丙杰. 废水生物脱氮过程中N2O排放数学模型研究进展[J]. 环境工程, 2022, 40(6): 97-106,122. doi: 10.13205/j.hjgc.202206013
Chen Shi, PENG Lai, XU Yifeng, LIANG Chuanzhou, NI Bingjie. RECENT ADVANCES IN MATHEMATICAL MODELING OF NITROUS OXIDES EMISSION DURING BIOLOGICAL NITROGEN REMOVAL FROM WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 97-106,122. doi: 10.13205/j.hjgc.202206013
Citation: Chen Shi, PENG Lai, XU Yifeng, LIANG Chuanzhou, NI Bingjie. RECENT ADVANCES IN MATHEMATICAL MODELING OF NITROUS OXIDES EMISSION DURING BIOLOGICAL NITROGEN REMOVAL FROM WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 97-106,122. doi: 10.13205/j.hjgc.202206013

废水生物脱氮过程中N2O排放数学模型研究进展

doi: 10.13205/j.hjgc.202206013
基金项目: 

51908436)

国家自然科学基金(52100061

详细信息
    作者简介:

    陈诗(2000-),女,硕士研究生,主要研究方向为污染物迁移转化数学模拟。13037113280@163.com

    通讯作者:

    彭来(1989-),男,教授,主要研究方向为低碳污水处理。lai.peng@whut.edu.cn

RECENT ADVANCES IN MATHEMATICAL MODELING OF NITROUS OXIDES EMISSION DURING BIOLOGICAL NITROGEN REMOVAL FROM WASTEWATER

  • 摘要: 氧化亚氮(N2O)的温室效应比CO2强265倍,可从废水生物脱氮过程中产生并直接排放,如果不对其加以控制,会显著增加污水处理厂的碳足迹。N2O排放的数学建模对于深入解析N2O产生机制、量化N2O排放、优化生物脱氮工艺和制定N2O减排策略具有重要意义。结合当前国内外研究现状,阐述了废水生物脱氮过程中N2O产生机制;归纳了基于不同机制建立的N2O数学模型,包括氨氧化细菌(ammonia-oxidizing bacteria,AOB)经过羟胺氧化途径和AOB反硝化途径产生N2O模型、异养反硝化途径产生N2O模型以及耦合AOB和异养反硝化细菌产生N2O模型;总结了新型生物脱氮系统N2O模型,实际工程应用情况及校准N2O数学模型中存在的问题;并对今后N2O数学模型的研究方向进行了展望。
  • [1] STOCKER T. Climate change 2013:the physical science basis:Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change[M]. Cambridge:Cambridge University Press, 2014.
    [2] PORTMANN R W, DANIEL J S, RAVISHANKARA A R. Stratospheric ozone depletion due to nitrous oxide:influences of other gases[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2012, 367(1593):1256-1264.
    [3] KAMPSCHREUR M J, TEMMINK H, KLEEREBEZEM R, et al. Nitrous oxide emission during wastewater treatment[J]. Water Research, 2009, 43(17):4093-4103.
    [4] LAW Y, YE L, PAN Y T, et al. Nitrous oxide emissions from wastewater treatment processes[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2012, 367(1593):1265-1277.
    [5] LAW Y, LANT P, YUAN Z G. The confounding effect of nitrite on N2O production by an enriched ammonia-oxidizing culture[J]. Environmental Science&Technology, 2013, 47(13):7186-7194.
    [6] PAN Y T, NI B J, YUAN Z G. Modeling electron competition among nitrogen oxides reduction and N2O accumulation in denitrification[J]. Environmental Science&Technology, 2013, 47(19):11083-11091.
    [7] YANG S, GAO M M, LIANG S, et al. Effects of step-feed on long-term performances and N2O emissions of partial nitrifying granules[J]. Bioresource Technology, 2013, 143:682-685.
    [8] MASSARA T M, MALAMIS S, GUISASOLA A, et al. A review on nitrous oxide (N2O) emissions during biological nutrient removal from municipal wastewater and sludge reject water[J]. Science of the Total Environment, 2017, 596/597:106-123.
    [9] 闫旭,郭东丽,刘礼涛,等.不同污水处理工艺N2O减排方法研究进展[J].环境工程, 2017, 35(9):24-28.
    [10] AHN J H, KIM S, PARK H, et al. N2O emissions from activated sludge processes, 2008-2009:results of a national monitoring survey in the united states[J]. Environmental Science&Technology, 2010, 44(12):4505-4511.
    [11] AHN J H, KWAN T, CHANDRAN K. Comparison of partial and full nitrification processes applied for treating high-strength nitrogen wastewaters:microbial ecology through nitrous oxide production[J]. Environmental Science&Technology, 2011, 45(7):2734-2740.
    [12] FOLEY J, de HAAS D, YUAN Z G, et al. Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants[J]. Water Research, 2010, 44(3):831-844.
    [13] YE L, NI B J, LAW Y, et al. A novel methodology to quantify nitrous oxide emissions from full-scale wastewater treatment systems with surface aerators[J]. Water Research, 2014, 48:257-268.
    [14] NI B J, YUAN Z G. Recent advances in mathematical modeling of nitrous oxides emissions from wastewater treatment processes[J]. Water Research, 2015, 87:336-346.
    [15] HOOPER A B, VANNELLI T, BERGMANN D J, et al. Enzymology of the oxidation of ammonia to nitrite by bacteria[J]. Antonie Van Leeuwenhoek, 1997, 71(1/2):59-67.
    [16] POUGHON L, DUSSAP C G, GROS J B. Energy model and metabolic flux analysis for autotrophic nitrifiers[J]. Biotechnology and Bioengineering, 2001, 72(4):416-433.
    [17] STEIN L Y. Surveying N2O-producing pathways in bacteria[J]. Methods in Enzymology, 2011, 486:131-152.
    [18] STEIN L Y, KLOTZ M G. Nitrifying and denitrifying pathways of methanotrophic bacteria[J]. Biochemical Society Transactions, 2011, 39(6):1826-1831.
    [19] LAW Y, NI B J, LANT P, et al. N2O production rate of an enriched ammonia-oxidising bacteria culture exponentially correlates to its ammonia oxidation rate[J]. Water Research, 2012, 46(10):3409-3419.
    [20] CHANDRAN K, STEIN L Y, KLOTZ M G, et al. Nitrous oxide production by lithotrophic ammonia-oxidizing bacteria and implications for engineered nitrogen-removal systems[J]. Biochemical Society Transactions, 2011, 39(6):1832-1837.
    [21] YU R, KAMPSCHREUR M J, van LOOSDRECHT M C M, et al. Mechanisms and specific directionality of autotrophic nitrous oxide and nitric oxide generation during transient anoxia[J]. Environmental Science&Technology, 2010, 44(4):1313-1319.
    [22] YANG Q, LIU X H, PENG C Y, et al. N2O production during nitrogen removal via nitrite from domestic wastewater:main sources and control method[J]. Environmental Science&Technology, 2009, 43(24):9400-9406.
    [23] PENG L, NI B J, YE L, et al. The combined effect of dissolved oxygen and nitrite on N2O production by ammonia oxidizing bacteria in an enriched nitrifying sludge[J]. Water Research, 2015, 73:29-36.
    [24] SCHULTHESS R, GUJER W. Release of nitrous oxide (N2O) from denitrifying activated sludge:verification and application of a mathematical model[J]. Water Research, 1996, 30(3):521-530.
    [25] PAN Y, YE L, NI B J, et al. Effect of pH on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers[J]. Water Research, 2012, 46(15):4832-4840.
    [26] LU H J, CHANDRAN K. Factors promoting emissions of nitrous oxide and nitric oxide from denitrifying sequencing batch reactors operated with methanol and ethanol as electron donors[J]. Biotechnology and Bioengineering, 2010, 106(3):390-398.
    [27] DOMINGO-FELEZ C, SMETS B F. A consilience model to describe N2O production during biological N removal[J]. Environmental Science-Water Research&Technology, 2016, 2(6):923-930.
    [28] SOLER-JOFRA A, STEVENS B, HOEKSTRA M, et al. Importance of abiotic hydroxylamine conversion on nitrous oxide emissions during nitritation of reject water[J]. Chemical Engineering Journal, 2016, 287:720-726.
    [29] NI B J, YE L, LAW Y, et al. Mathematical modeling of nitrous oxide (N2O) emissions from full-scale wastewater treatment plants[J]. Environmental Science&Technology, 2013, 47(14):7795-7803.
    [30] NI B J, RUSCALLEDA M, PELLICER-NACHER C, et al. Modeling nitrous oxide production during biological nitrogen removal via nitrification and denitrification:extensions to the general ASM models[J]. Environmental Science&Technology, 2011, 45(18):7768-7776.
    [31] MAMPAEY K E, BEUCKELS B, KAMPSCHREUR M J, et al. Modelling nitrous and nitric oxide emissions by autotrophic ammonia-oxidizing bacteria[J]. Environmental Technology, 2013, 34(9/10/11/12):1555-1566.
    [32] POCQUET M, QUEINNEC I, SPÉRANDIO M. Adaptation and identification of models for nitrous oxide (N2O) production by autotrophic nitrite reduction; proceedings of the Proceedings 11th IWA conference on instrumentation, control and automation (ICA2013) Narbonne, France, September, F, 2013[C].
    [33] GUO L S, VANROLLEGHEM P A. Calibration and validation of an activated sludge model for greenhouse gases no. 1(ASMG1):prediction of temperature-dependent N2O emission dynamics[J]. Bioprocess and Biosystems Engineering, 2014, 37(2):151-163.
    [34] NI B J, YUAN Z, CHANDRAN K, et al. Evaluating four mathematical models for nitrous oxide production by autotrophic ammonia-oxidizing bacteria[J]. Biotechnology and Bioengineeing, 2013, 110(1):153-163.
    [35] SPERANDIO M, POCQUET M, GUO L S, et al. Evaluation of different nitrous oxide production models with four continuous long-term wastewater treatment process data series[J]. Bioprocess and Biosystems Engineeing, 2016, 39(3):493-510.
    [36] POCQUET M, WU Z, QUEINNEC I, et al. A two pathway model for N2O emissions by ammonium oxidizing bacteria supported by the NO/N2O variation[J]. Water Research, 2016, 88:948-959.
    [37] PENG L, NI B J, YE L, et al. Selection of mathematical models for N2O production by ammonia oxidizing bacteria under varying dissolved oxygen and nitrite concentrations[J]. Chemical Engineering Journal, 2015, 281:661-668.
    [38] NI B J, PENG L, LAW Y, et al. Modeling of nitrous oxide production by autotrophic ammonia-oxidizing bacteria with multiple production pathways[J]. Environmental Science&Technology, 2014, 48(7):3916-3924.
    [39] PENG L, NI B J, ERLER D, et al. The effect of dissolved oxygen on N2O production by ammonia-oxidizing bacteria in an enriched nitrifying sludge[J]. Water Research, 2014, 66:12-21.
    [40] PENG L, NI B J, LAW Y, et al. Modeling N2O production by ammonia oxidizing bacteria at varying inorganic carbon concentrations by coupling the catabolic and anabolic processes[J]. Chemical Engineering Science, 2016, 144:386-394.
    [41] LANG L, POCQUET M, NI B J, et al. Comparison of different two-pathway models for describing the combined effect of DO and nitrite on the nitrous oxide production by ammonia-oxidizing bacteria[J]. Water Science&Technology, 2017, 75(3/4):491-500.
    [42] RODRIGUEZ-CABALLERO A, RIBERA A, BALCAZAR J L, et al. Nitritation versus full nitrification of ammonium-rich wastewater:comparison in terms of nitrous and nitric oxides emissions[J]. Bioresource Technology, 2013, 139:195-202.
    [43] DING X Q, ZHAO J Q, GAO K, et al. Modeling of nitrous oxide production by ammonium-oxidizing bacteria[J]. Environmental Engineering Science, 2018, 35(1):1-10.
    [44] HIATT W C, GRADY C P, JR. An updated process model for carbon oxidation, nitrification, and denitrification[J]. Water Environment Research, 2008, 80(11):2145-2156.
    [45] PAN Y T, NI B J, LU H J, et al. Evaluating two concepts for the modelling of intermediates accumulation during biological denitrification in wastewater treatment[J]. Water Research, 2015, 71:21-31.
    [46] LIU Y W, PENG L, CHEN X M, et al. Mathematical modeling of nitrous oxide production during denitrifying phosphorus removal process[J]. Environmental Science&Technology, 2015, 49(14):8595-8601.
    [47] DING X Q, ZHAO J Q, HU B, et al. Mathematical modeling of nitrous oxide production in an anaerobic/oxic/anoxic process[J]. Bioresource Technology, 2016, 222:39-48.
    [48] DING X Q, ZHAO J Q, HU B, et al. Mathematical modeling of nitrous oxide (N2O) production in anaerobic/anoxic/oxic processes:improvements to published N2O models[J]. Chemical Engineering Journal, 2017, 325:386-395.
    [49] DOMINGO-FELEZ C, SMETS B F. Modeling denitrification as an electric circuit accurately captures electron competition between individual reductive steps:the activated sludge model-electron competition model[J]. Environmental Science&Technology, 2020, 54(12):7330-7338.
    [50] MAMPAEY K E, SPERANDIO M, VAN LOOSDRECHT M C M, et al. Dynamic simulation of N2O emissions from a full-scale partial nitritation reactor[J]. Biochemical Engineering Journal, 2019, 152:107356.
    [51] PAVISSICH J, READ-DAILY B, SANDBERG K, et al. Nitrous oxide (N2O) reduction by denitrifying bacteria:relating kinetics and gene expression[J]. Proceedings of the Water Environment Federation, 2012, 2012(12):3737-3746.
    [52] WISNIEWSKI K, KOWALSKI M, MAKINIA J. Modeling nitrous oxide production by a denitrifying-enhanced biologically phosphorus removing (EBPR) activated sludge in the presence of different carbon sources and electron acceptors[J]. Water Research, 2018, 142:55-64.
    [53] CHEN H B, ZENG L, WANG D B, et al. Recent advances in nitrous oxide production and mitigation in wastewater treatment[J]. Water Research, 2020, 184:116168.
    [54] WANG Q L, NI B J, LEMAIRE R, et al. Modeling of nitrous oxide production from nitritation reactors treating real anaerobic digestion liquor[J]. Scientific Reports, 2016, 6:8.
    [55] DOMINGO-FELEZ C, CALDERO-PASCUAL M, SIN G, et al. Calibration of the comprehensive NDHA-N2O dynamics model for nitrifier-enriched biomass using targeted respirometric assays[J]. Water Research, 2017, 126:29-39.
    [56] MASSARA T M, SOLíS B, GUISASOLA A, et al. Development of an ASM2d-N2O model to describe nitrous oxide emissions in municipal WWTPs under dynamic conditions[J]. Chemical Engineering Journal, 2018, 335:185-196.
    [57] KAMPSCHREUR M J, VAN DER STAR W R L, WIELDERS H A, et al. Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment[J]. Water Research, 2008, 42(3):812-826.
    [58] OKABE S, OSHIKI M, TAKAHASHI Y, et al. N2O emission from a partial nitrification-anammox process and identification of a key biological process of N2O emission from anammox granules[J]. Water Research, 2011, 45(19):6461-6470.
    [59] DOMINGO-FELEZ C, MUTLU A G, JENSEN M M, et al. Aeration strategies to mitigate nitrous oxide emissions from single-stage nitritation/anammox reactors[J]. Environmental Science&Technology, 2014, 48(15):8679-8687.
    [60] JIN Y, WANG D Q, ZHANG W J. Effects of substrates on N2O emissions in an anaerobic ammonium oxidation (anammox) reactor[J]. SpringerPlus, 2016, 5:741.
    [61] ZHANG W J, JIN Y. Effects of Fe (Ⅱ) on N2O emissions from anammox reactors[J]. Desalination and Water Treatment, 2017, 63:221-226.
    [62] ZHANG W J, WANG D Q, JIN Y. Effects of inorganic carbon on the nitrous oxide emissions and microbial diversity of an anaerobic ammonia oxidation reactor[J]. Bioresource Technology, 2018, 250:124-130.
    [63] ALI M, RATHNAYAKE R, ZHANG L, et al. Source identification of nitrous oxide emission pathways from a single-stage nitritation-anammox granular reactor[J]. Water Research, 2016, 102:147-157.
    [64] van HULLE S W, CALLENS J, MAMPAEY K E, et al. N2O and NO emissions during autotrophic nitrogen removal in a granular sludge reactor——a simulation study[J]. Environmental Technology, 2012, 33(19/20/21):2281-2290.
    [65] PENG L, LIU Y W, NI B J. Nitrous oxide production in completely autotrophic nitrogen removal biofilm process:a simulation study[J]. Chemical Engineering Journal, 2016, 287:217-224.
    [66] WAN X Y, BAETEN J E, VOLCKE E I P. Effect of operating conditions on N2O emissions from one-stage partial nitritation-anammox reactors[J]. Biochemical Engineering Journal, 2019, 143:24-33.
    [67] MOZUMDER M S I, PICIOREANU C, VAN LOOSDRECHT M C M, et al. Effect of heterotrophic growth on autotrophic nitrogen removal in a granular sludge reactor[J]. Environmental Technology, 2014, 35(8):1027-1037.
    [68] CHEN X M, NI B J, SIN G. Nitrous oxide production in autotrophic nitrogen removal granular sludge:a modeling study[J]. Biotechnology and Bioengineering, 2019, 116(6):1280-1291.
    [69] JIA W L, ZHANG J, XIE H J, et al. Effect of PHB and oxygen uptake rate on nitrous oxide emission during simultaneous nitrification denitrification process[J]. Bioresource Technology, 2012, 113:232-238.
    [70] JIA W L, LIANG S, NGO H H, et al. Effect of phosphorus load on nutrients removal and N2O emission during low-oxygen simultaneous nitrification and denitrification process[J]. Bioresource Technology, 2013, 141:123-130.
    [71] LI M, DU C Y, LAN M C, et al. Nitrogen removal and nitrogenous intermediate production of the heterotrophic membrane-aerated biofilm:a mathematical modeling investigation[J]. Korean Journal of Chemical Engineering, 2020, 37(3):525-535.
    [72] LIU Y R, ZHU T T, REN S Q, et al. Contribution of nitrification and denitrification to nitrous oxide turnovers in membrane-aerated biofilm reactors (MABR):a model-based evaluation[J]. Science of the Total Environment, 2021,86(3):151321.
    [73] BLOMBERG K, KOSSE P, MIKOLA A, et al. Development of an extended ASM3 model for predicting the nitrous oxide emissions in a full-scale wastewater treatment Plant[J]. Environmental Science&Technology, 2018, 52(10):5803-5811.
    [74] NI B J, PAN Y, van DEN AKKER B, et al. Full-scale modeling explaining large spatial variations of nitrous oxide fluxes in a step-feed plug-flow wastewater treatment reactor[J]. Environmental Science&Technology, 2015, 49(15):9176-9184.
    [75] DUAN H R, van den AKKER B, THWAITES B J, et al. Mitigating nitrous oxide emissions at a full-scale wastewater treatment plant[J]. Water Research, 2020, 185:116196.
    [76] BRUN R, KUHNI M, SIEGRIST H, et al. Practical identifiability of ASM2d parameters-systematic selection and tuning of parameter subsets[J]. Water Research, 2002, 36(16):4113-4127.
    [77] LAW Y, LANT P, YUAN Z G. The effect of pH on N2O production under aerobic conditions in a partial nitritation system[J]. Water Research, 2011, 45(18):5934-5944.
    [78] DOCHAIN D, VANROLLEGHEM P A. Dynamical modelling&estimation in wastewater treatment processes[J]. Water Intelligence Online, 2001, 4.
    [79] BRUN R, REICHERT P, KVNSCH H. Practical identifiability analysis of large environmental simulation models[J]. Water Resources Research, 2001, 37(4):1015-1030.
    [80] KIM M J, WU G X, YOO C K. Quantification of nitrous oxide (N2O) emissions and soluble microbial product (SMP) production by a modified AOB-NOB-N2O-SMP model[J]. Bioresource Technology, 2017, 227:227-238.
    [81] DOMINGO-FÉLEZ C, PELLICER-NÀCHER C, PETERSEN M S, et al. Heterotrophs are key contributors to nitrous oxide production in activated sludge under low C-to-N ratios during nitrification-Batch experiments and modeling[J]. Biotechnology and Bioengineering, 2017, 114(1):132-140.
    [82] BENNETT N D, CROKE B F W, GUARISO G, et al. Characterising performance of environmental models[J]. Environmental Modelling&Software, 2013, 40:1-20.
  • 加载中
计量
  • 文章访问数:  276
  • HTML全文浏览量:  51
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-20
  • 网络出版日期:  2022-09-01
  • 刊出日期:  2022-09-01

目录

    /

    返回文章
    返回