中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

污水处理系统中N2O的生产利用及数据驱动模拟研究进展

徐润泽 操家顺 方芳

徐润泽, 操家顺, 方芳. 污水处理系统中N2O的生产利用及数据驱动模拟研究进展[J]. 环境工程, 2022, 40(6): 107-115. doi: 10.13205/j.hjgc.202206014
引用本文: 徐润泽, 操家顺, 方芳. 污水处理系统中N2O的生产利用及数据驱动模拟研究进展[J]. 环境工程, 2022, 40(6): 107-115. doi: 10.13205/j.hjgc.202206014
XU Runze, CAO Jiashun, FANG Fang. RESEARCH PROGRESS ON N2O RECYCLING AND DATA-DRIVEN MODELING IN WASTEWATER TREATMENT PROCESSES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 107-115. doi: 10.13205/j.hjgc.202206014
Citation: XU Runze, CAO Jiashun, FANG Fang. RESEARCH PROGRESS ON N2O RECYCLING AND DATA-DRIVEN MODELING IN WASTEWATER TREATMENT PROCESSES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 107-115. doi: 10.13205/j.hjgc.202206014

污水处理系统中N2O的生产利用及数据驱动模拟研究进展

doi: 10.13205/j.hjgc.202206014
基金项目: 

国家自然科学基金面上项目"胞内存储物介导下硫自养/异养协同反硝化系统中不同微生物间相互作用机制研究"(52170032)

国家自然科学基金面上项目"温室气体N2O为电子受体条件下活性污泥胞内PHA的合成机制研究"(51878244)

详细信息
    作者简介:

    徐润泽(1995-),男,在读博士研究生,主要研究方向为污水资源化。runzexu@hhu.edu.cn

    通讯作者:

    方芳(1982-),女,副教授,主要研究方向为污水处理及资源化。ffang65@hhu.edu.cn

RESEARCH PROGRESS ON N2O RECYCLING AND DATA-DRIVEN MODELING IN WASTEWATER TREATMENT PROCESSES

  • 摘要: 氧化亚氮(N2O)是一种温室气体,同时也是具有能源回收潜力的强氧化性物质。综述了促进N2O产生的新兴污水脱氮过程及提高N2O产生的方法,比较了不同方法的运行条件及N2O转化率,并指出了各种方法的不足之处。从识别N2O产生的关键影响因素和预测N2O产量2个方面综述了污水处理过程中N2O数据驱动模型的研究进展。目前N2O的增产方法主要包括耦合好氧-缺氧氮分解过程、单反应器生产过程及基因工程菌和半导体修饰菌增产过程。收集污水处理厂中的大数据可以建立N2O数据驱动模型,但是现有的数据驱动模型仅仅关注N2O减排。开发N2O的新型增产过程,优化控制增产过程的功能菌种,建立N2O数据驱动模型与N2O增产方法之间的关联性是未来N2O生产利用技术的发展方向。
  • [1] 巩有奎,任丽芳,彭永臻.不同盐度生活污水硝化及N2O释放特性[J].水处理技术, 2019, 45(9):99-103.
    [2] 何德明,尹志轩,刘长青,等.生物脱氮工艺过程中N2O的释放机理及减排影响因素研究进展[J].环境污染与防治, 2021, 43(8):1054-1061.
    [3] 巩有奎,任丽芳,罗佩云,等. NaCl浓度对SBBR同步脱氮及N2O释放的影响[J].农业工程学报, 2020, 36(3):152-159.
    [4] 巩有奎,彭永臻.温度变化对短程生物脱氮及N2O释放影响[J].水处理技术, 2020, 46(8):110-115.
    [5] 裘湛,赵刚,黄翔峰.污水处理厂N2O的释放特征和减排途径研究[J].环境科学与管理, 2016, 41(4):74-77.
    [6] WU L, PENG L, WEI W, et al. Nitrous oxide production from wastewater treatment:the potential as energy resource rather than potent greenhouse gas[J]. Journal of Hazardous Materials, 2020,387:121694.
    [7] SCHERSON Y D, WELLS G F, WOO S G, et al. Nitrogen removal with energy recovery through N2O decomposition[J]. Energy&Environmental Science, 2013, 6(1):241-248.
    [8] SCHERSON Y D, WOO S G, CRIDDLE C S. Production of nitrous oxide from anaerobic digester centrate and its use as a co-oxidant of biogas to enhance energy recovery[J]. Environmental Science&Technology, 2014, 48(10):5612-5619.
    [9] ZHAO J Q, HUANG N, HU B, et al. Potential of nitrous oxide recovery from an aerobic/oxic/anoxic SBR process[J]. Water Science and Technology, 2016, 73(5):1061-1066.
    [10] GAO H, LIU M, GRIFFIN J S, et al. Complete nutrient removal coupled to nitrous oxide production as a bioenergy source by denitrifying polyphosphate-accumulating organisms[J]. Environmental Science&Technology, 2017, 51(8):4531-4540.
    [11] NI B J, PENG L, LAW Y, et al. Modeling of nitrous oxide production by autotrophic ammonia-oxidizing bacteria with multiple production pathways[J]. Environmental Science&Technology, 2014, 48(7):3916-3924.
    [12] NI B J, PAN Y, VAN DEN AKKER B, et al. Full-scale modeling explaining large spatial variations of nitrous oxide fluxes in a step-feed plug-flow wastewater treatment reactor[J]. Environmental Science&Technology, 2015, 49(15):9176-9184.
    [13] NI B J, YUAN Z. Recent advances in mathematical modeling of nitrous oxides emissions from wastewater treatment processes[J]. Water Research, 2015, 87:336-346.
    [14] 李真.基于ASM2D模型的废水同步脱氮除磷过程的动力学模拟研究[D].广州:华南理工大学, 2020.
    [15] 刘玉田,张守彬,邱立平,等.污水生物脱氮过程硝化阶段N2O动力学模型[J].环境工程学报, 2017, 11(8):4601-4608.
    [16] PEREIRA T D S, SPINDOLA R H, RABELO C, et al. A predictive model for N2O production in anammox-granular sludge reactors:Combined effects of nitrate/ammonium ratio and organic matter concentration[J]. Journal of Environmental Management, 2021, 297:113295.
    [17] SCHMIDHUBER J. Deep learning in neural networks:an overview[J]. Neural Networks, 2015, 61:85-117.
    [18] XU R Z, CAO J S, LUO J Y, et al. Integrating mechanistic and deep learning models for accurately predicting the enrichment of polyhydroxyalkanoates accumulating bacteria in mixed microbial cultures[J]. Bioresource Technology, 2022,344:126276.
    [19] XU R Z, CAO J S, FENG G, et al. Fast identification of fluorescent components in three-dimensional excitation-emission matrix fluorescence spectra via deep learning[J]. Chemical Engineering Journal, 2021:132893.
    [20] XU R Z, CAO J S, FANG F, et al. Integrated data-driven strategy to optimize the processes configuration for full-scale wastewater treatment plant predesign[J]. Science of the Total Environment, 2021, 785:147356.
    [21] XU R Z, CAO J S, WU Y, et al. An integrated approach based on virtual data augmentation and deep neural networks modeling for VFA production prediction in anaerobic fermentation process[J]. Water Research, 2020, 184:116103.
    [22] NIE H B, DANG Y, YAN H K, et al. Enhanced recovery of nitrous oxide from incineration leachate in a microbial electrolysis cell inoculated with a nosZ-deficient strain of Pseudomonas aeruginosa[J]. Bioresource Technology, 2021, 333:125082.
    [23] NIE H B, LIU X Y, DANG Y, et al. Efficient nitrous oxide recovery from incineration leachate by a nosZ-deficient strain of Pseudomonas aeruginosa[J]. Bioresource Technology, 2020, 297:122371.
    [24] YU K H, CAN F, ERGENEKON P. Nitric oxide and nitrite removal by partial denitrifying hollow-fiber membrane biofilm reactor coupled with nitrous oxide generation as energy recovery[J]. Environmental Technology, 2021:1-14.
    [25] YE J Y, GAO H, DOMINGO-FÉLEZ C, et al. Insights into chronic zinc oxide nanoparticle stress responses of biological nitrogen removal system with nitrous oxide emission and its recovery potential[J]. Bioresource Technology, 2021, 327:124797.
    [26] ZHANG M, GU J, LIU Y. Engineering feasibility, economic viability and environmental sustainability of energy recovery from nitrous oxide in biological wastewater treatment plant[J]. Bioresource Technology, 2019, 282:514-519.
    [27] WANG L K, CHEN X, WEI W, et al. Biological reduction of nitric oxide for efficient recovery of nitrous oxide as an energy source[J]. Environmental Science&Technology, 2021, 55(3):1992-2005.
    [28] YU C, QIAO S, YANG Y, et al. Energy recovery in the form of N2O by denitrifying bacteria[J]. Chemical Engineering Journal, 2019, 371:500-506.
    [29] CHEN M, ZHOU X F, YU Y Q, et al. Light-driven nitrous oxide production via autotrophic denitrification by self-photosensitized Thiobacillus denitrificans[J]. Environmental Internation, 2019, 127:353-360.
    [30] FANG F, XU R Z, HUANG Y Q, et al. Exploring the feasibility of nitrous oxide reduction and polyhydroxyalkanoates production simultaneously by mixed microbial cultures[J]. Bioresource Technology, 2021,342:126012.
    [31] WANG Z Y, WOO S G, YAO Y N, et al. Nitrogen removal as nitrous oxide for energy recovery:increased process stability and high nitrous yields at short hydraulic residence times[J]. Water Research, 2020, 173:115575.
    [32] WEIßBACH M, THIEL P, DREWES J E, et al. Nitrogen removal and intentional nitrous oxide production from reject water in a coupled nitritation/nitrous denitritation system under real feed-stream conditions[J]. Bioresource Technology, 2018, 255:58-66.
    [33] WEIßBACH M, DREWES J E, KOCH K. Application of the oxidation reduction potential (ORP) for process control and monitoring nitrite in a Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO)[J]. Chemical Engineering Journal, 2018, 343:484-491.
    [34] WEIßBACH M, GOSSLER F, DREWES J E, et al. Separation of nitrous oxide from aqueous solutions applying a micro porous hollow fiber membrane contactor for energy recovery[J]. Separation and Purification Technology, 2018, 195:271-280.
    [35] FANG F, XU R Z, HUANG Y Q, et al. Production of polyhydroxyalkanoates and enrichment of associated microbes in bioreactors fed with rice winery wastewater at various organic loading rates[J]. Bioresource Technology, 2019, 292:121978.
    [36] ZHAO Y, ZENG D, WU G. Efficient nitrous oxide production and metagenomics-based analysis of microbial communities in denitrifying systems acclimated with different electron acceptors[J]. International Biodeterioration&Biodegradation, 2019, 138:92-98.
    [37] ZHUGE Y Y, SHEN X Y, LIU Y D, et al. Application of acidic conditions and inert-gas sparging to achieve high-efficiency nitrous oxide recovery during nitrite denitrification[J]. Water Research, 2020, 182:116001.
    [38] WU L, WANG L K, WEI W, et al. Sulfur-driven autotrophic denitrification of nitric oxide for efficient nitrous oxide recovery[J]. Biotechnology and Bioengineering, 2021, 119(1):257-267.
    [39] LIN Z, SUN D, DANG Y, et al. Significant enhancement of nitrous oxide energy yields from wastewater achieved by bioaugmentation with a recombinant strain of Pseudomonas aeruginosa[J]. Scientific Reports, 2018, 8(1):11916.
    [40] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444.
    [41] ZHONG S, ZHANG K, BAGHERI M, et al. Machine learning:new ideas and tools in environmental science and engineering[J]. Environmental Science&Technology, 2021, 55(19):12741-12754.
    [42] ZAGHLOUL M S, IORHEMEN O T, HAMZA R A, et al. Development of an ensemble of machine learning algorithms to model aerobic granular sludge reactors[J]. Water Research, 2021, 189:116657.
    [43] NEWHART K B, HOLLOWAY R W, HERING A S, et al. Data-driven performance analyses of wastewater treatment plants:a review[J]. Water Research, 2019, 157:498-513.
    [44] VASILAKI V, MASSARA T M, STANCHEV P, et al. A decade of nitrous oxide (N2O) monitoring in full-scale wastewater treatment processes:a critical review[J]. Water Research, 2019, 161:392-412.
    [45] HWANGBO S, AL R, CHEN X, et al. Integrated model for understanding N2O emissions from wastewater treatment plants:a deep learning approach[J]. Environmental Science&Technology, 2021, 55(3):2143-2151.
    [46] van DIJK E J H, van LOOSDRECHT M C M, PRONK M. Nitrous oxide emission from full-scale municipal aerobic granular sludge[J]. Water Research, 2021, 198:117159.
    [47] SONG M J, CHOI S, BAE W B, et al. Identification of primary effecters of N2O emissions from full-scale biological nitrogen removal systems using random forest approach[J]. Water Research, 2020,184:116144.
    [48] BAE W B, PARK Y, CHANDRAN K, et al. Temporal triggers of N2O emissions during cyclical and seasonal variations of a full-scale sequencing batch reactor treating municipal wastewater[J]. Science of the Total Environment, 2021, 797:149093.
    [49] SALTELLI A, ANNONI P, AZZINI I, et al. Variance based sensitivity analysis of model output. design and estimator for the total sensitivity index[J]. Computer Physics Communications, 2010, 181(2):259-270.
    [50] KUCHERENKO S, TARANTOLA S, ANNONI P. Estimation of global sensitivity indices for models with dependent variables[J]. Computer Physics Communications, 2012, 183(4):937-946.
    [51] VASILAKI V, CONCA V, FRISON N, et al. A knowledge discovery framework to predict the N2O emissions in the wastewater sector[J]. Water Research, 2020, 178:115799.
    [52] DIETRICH R, OPPER M, SOMPOLINSKY H. Statistical mechanics of support vector networks[J]. Physical Review Letters, 1999, 82(14):2975-2978.
    [53] ASADI M, MCPHEDRAN K N. Greenhouse gas emission estimation from municipal wastewater using a hybrid approach of generative adversarial network and data-driven modelling[J]. Science of the Total Environment, 2021, 800:149508.
    [54] VASILAKI V, DANISHVAR S, MOUSAVI A, et al. Data-driven versus conventional N2O EF quantification methods in wastewater; how can we quantify reliable annual EFs?[J]. Computers&Chemical Engineering, 2020, 141:106997.
    [55] STENTOFT P A, MUNK-NIELSEN T, MOLLER J K, et al. Prioritize effluent quality, operational costs or global warming?-Using predictive control of wastewater aeration for flexible management of objectives in WRRFs[J]. Water Research, 2021, 196:116960.
  • 加载中
计量
  • 文章访问数:  252
  • HTML全文浏览量:  43
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-01
  • 网络出版日期:  2022-09-01
  • 刊出日期:  2022-09-01

目录

    /

    返回文章
    返回