CHARACTERISTICS OF GREENHOUSE GAS EMISSIONS FROM MUNICIPAL WASTEWATER TREATMENT PLANTS IN MAJOR URAN GROUPS OF CHINA BASED ON EMISSION FACTOR METHOD
-
摘要: 温室气体产生是"碳中和"背景下污水处理行业亟待解决的问题之一,准确掌握我国主要城市区域污水处理厂温室气体的产生特征和变化规律是制定减排政策的前提。基于污水处理量的排放因子法,建立了2015-2019年中国五大城市群城镇污水处理厂温室气体二氧化碳(CO2)、甲烷(CH4)和氧化亚氮(N2O)的排放清单,分析了温室气体排放的时空分布和影响因素。结果表明:五大城市群城镇污水处理厂温室气体排放量逐年升高,长江三角洲城市群排放量始终最高,2019年达到2042.78 Gg CO2-eq,汾渭平原城市群排放量最低;珠江三角洲城市群人均温室气体排放量最高,2019年达到20.36 kg/人;相关性分析显示,污水厂温室气体排放量与人口、GDP、污水处理能力和污水处理率呈显著正相关。Abstract: The issue of greenhouse gases (GHGs) production is one of the problems to be solved for the wastewater treatment industry under the background of "carbon neutrality" .An accurate grasp of the production characteristics and variations of China's major urban areas is the prerequisite of formulation reduction policies on GHGs emissions.The emission factor method based on the treated sewage amount was used to establish the emission inventory of GHGs of carbon dioxide (CO2),methane (CH4),and nitrous oxide (N2O) from municipal wastewater treatment plants (MWWTPs) of five major urban groups in China during 2015-2019 in this article,and the temporal and spatial distribution and influencing factors of GHGs were analyzed.The results showed that the GHGs emission amount from MWWTPs of the five major urban groups increased during the five years.The highest emission amount was observed in the Yangtze River Delta urban group with the value of 2042.78 Gg CO2-eq in 2019,and the lowest was observed in Fenwei Plain urban group.The Pearl River Delta urban agglomeration had the highest per capita GHGs emission amounts,with a value of 20.36 kg/person in 2019.Correlation analysis showed that GHGs emission from MWWTPs were significantly positively correlated with the factors of population,GDP,wastewater treatment capacity,and wastewater treatment rate.
-
[1] LIU Y, TANG H Y, MUHAMMAD A, et al. Emission mechanism and reduction countermeasures of agricultural greenhouse gases:a review[J]. Greenhouse Gases:Science and Technology, 2019, 9(2):160-174. [2] YUE X L, GAO Q X. Contributions of natural systems and human activity to greenhouse gas emissions[J]. Advances in Climate Change Research, 2018, 9(4):243-252. [3] CHEN K H, WANG H C, PÉREZ B V, et al. Optimal control towards sustainable wastewater treatment plants based on multi-agent reinforcement learning[J]. Chemosphere, 2021, 279:1-12. [4] NAYEB H, MIRABI M, MOTIEE H, et al. Estimating greenhouse gas emissions from Iran's domestic wastewater sector and modeling the emission scenarios by 2030[J]. Journal of Cleaner Production, 2019, 236:1-13. [5] YAN X, QIU D Z, ZHENG S K, et al. Spatial and temporal distribution of greenhouse gas emissions from municipal wastewater treatment plants in China from 2005 to 2014[J]. Earth's Future, 2019, 7(4):340-350. [6] 翟萌,邵越,徐福军.西安污水处理厂温室气体排放及减排对策研究[J].环境工程, 2016, 34(2):23-26. [7] 邓乂寰,吴坤,阳平坚,等.我国城镇污水处理厂发展历程及技术建议[J].工业用水与废水, 2021, 52(4):1-5. [8] 中国统计年鉴[M].北京:中国统计出版社. 2016-2020. [9] LU C, LI W. A comprehensive city-level GHGs inventory accounting quantitative estimation with an empirical case of Baoding[J]. Science of the Total Environment, 2019, 651:601-613. [10] 宋晓伟,郝永佩,朱晓东.长三角城市群机动车污染物排放清单建立及特征研究[J].环境科学学报, 2020, 40(1):90-101. [11] 周兴,郑有飞,吴荣军,等. 2003-2009年中国污水处理部门温室气体排放研究[J].气候变化研究进展, 2012, 8(2):131-136. [12] DING T, NING Y D, ZHANG Y. Estimation of greenhouse gas emissions in China 1990-2013[J]. Greenhouse Gases Science&Technology, 2017, 7(6):1097-1115. [13] DU M X, ZHU Q A, WANG X G, et al. Estimates and predictions of methane emissions from wastewater in China from 2000 to 2020[J]. Earths Future, 2018, 6(2):252-263. [14] 石春力,田永英,黄海伟,等.我国城镇污水处理碳排放核算方法研究综述[J].建筑科技, 2021(11):39-43. [15] 陈伟,修春亮.新时期城市群理论内涵的再认知[J].地理科学进展, 2021, 40(5):848-857. [16] 闫章美,周德成,张良侠.我国三大城市群地区城市和农业用地地表热环境效应对比研究[J].生态学报, 2021, 41(22):8870-8881. [17] 林文鹏,郭欣瞳.中国城市群臭氧时空分布特征分析[J/OL].中国环境科学. https://doi.org/10.19674/j.cnki.issn1000-6923.20220207.002. [18] 李爱,王雅楠,李梦,等.碳排放的空间关联网络结构特征与影响因素研究:以中国三大城市群为例[J].环境科学与技术, 2021, 44(6):186-193. [19] LIU S H, TIAN H Z, LUO L N, et al. Health impacts and spatiotemporal variations of fine particulate and its typical toxic constituents in five urban agglomerations of China[J]. Science of the Total Environment, 2022,806:151459. [20] IPCC. 2006 IPCC guidelines for national greenhouse gas inventories[R]. Japan:IPCC,2006. [21] 国家统计局.数据查询[EB/OL]. https://data.stats.gov.cn/, 2021.10.9. [22] 河南省统计局.河南统计年鉴[M].北京:中国统计出版社, 2016-2020. [23] 山西省统计局.山西统计年鉴[M].北京:中国统计出版社, 2016-2020. [24] 陕西省统计局.陕西统计年鉴[M].北京:中国统计出版社, 2016-2020. [25] YAN X, LI L, LIU J X. Characteristics of greenhouse gas emission in three full-scale wastewater treatment processes[J]. Journal of Environmental Sciences, 2014, 26(2):256-263. [26] BAO Z Y, SUN S C, SUN D Z. Characteristics of direct CO2 emissions in four full-scale wastewater treatment plants[J]. Desalination&Water Treatment, 2015, 54(4/5):1070-1079. [27] 亓鹏玉,张建,王金鹤,等.城市污水处理厂甲烷的释放通量[J].环境工程学报, 2012, 6(3):843-847. [28] BAO Z Y, SUN S C, SUN D Z. Assessment of greenhouse gas emission from A/O and SBR wastewater treatment plants in Beijing, China[J]. International Biodeterioration&Biodegradation, 2016, 108:108-114. [29] LIU Y, CHENG X, LUN X X, et al. CH4 emission and conversion from A2O and SBR processes in full-scale wastewater treatment plants[J]. Journal of Environmental Sciences, 2014, 26(1):224-230. [30] WANG J H, ZHANG J, XIE H J, et al. Methane emissions from a full-scale A/A/O wastewater treatment plant[J]. Bioresource Technology, 2011, 102(9):5479-5485. [31] REN Y G, WANG J H, LI H F, et al. Nitrous oxide and methane emissions from different treatment processes in full-scale municipal wastewater treatment plants[J]. Environmental Technology, 2013, 34(21):2917-2927. [32] 王金鹤,张建.城镇污水处理厂SBR工艺中N2O的释放通量研究[J].山东建筑大学学报, 2012, 27(1):43-54. [33] WANG J H, ZHANG J, WANG J, et al. Nitrous oxide emissions from a typical northern Chinese municipal wastewater treatment plant[J]. Desalination&Water Treatment, 2011, 32(1):145-152. [34] LI H J, PENG D C, LIU W B, et al. N2O generation and emission from two biological nitrogen removal plants in China[J]. Desalination&Water Treatment, 2016, 57(25):11800-11806. [35] IPCC. Climate change 2014:synthesis report[R]. Copenhagen:IPCC, 2014. [36] 闫旭,邱德志,郭东丽,等.中国城镇污水处理厂温室气体排放时空分布特征[J].环境科学, 2018, 39(3):1256-1263. [37] 刘国华,庞毓旻,齐鲁,等. SBR工艺污水生物脱氮过程中N2O的释放特征[J].环境工程, 2020, 38(7):51-57. [38] 邓玉娇,王捷纯,徐杰,等.广东省NDVI时空变化特征及其对气候因子的响应[J].生态环境学报, 2021, 30(1):37-43. [39] 王亚宜,周东,赵伟,等.污水生物处理实际工艺中氧化亚氮的释放:现状与挑战[J].环境科学学报, 2014, 34(5):1079-1088. [40] 蔡博峰,高庆先,李中华,等.中国污水处理厂甲烷排放研究[J].中国环境科学, 2015, 35(12):3810-3816.
点击查看大图
计量
- 文章访问数: 530
- HTML全文浏览量: 87
- PDF下载量: 16
- 被引次数: 0