CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城镇污水管道系统甲烷产排特性及发生机制

薛朝霞 冯骞 方芳 罗景阳 操家顺 徐润泽

薛朝霞, 冯骞, 方芳, 罗景阳, 操家顺, 徐润泽. 城镇污水管道系统甲烷产排特性及发生机制[J]. 环境工程, 2022, 40(6): 123-129,193. doi: 10.13205/j.hjgc.202206016
引用本文: 薛朝霞, 冯骞, 方芳, 罗景阳, 操家顺, 徐润泽. 城镇污水管道系统甲烷产排特性及发生机制[J]. 环境工程, 2022, 40(6): 123-129,193. doi: 10.13205/j.hjgc.202206016
XUE Zhaoxia, FENG Qian, FANG Fang, LUO Jingyang, CAO Jiashun, XU Runze. EMISSION CHARACTERISTICS AND MECHANISMS OF METHANE IN MUNICIPAL SEWER SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 123-129,193. doi: 10.13205/j.hjgc.202206016
Citation: XUE Zhaoxia, FENG Qian, FANG Fang, LUO Jingyang, CAO Jiashun, XU Runze. EMISSION CHARACTERISTICS AND MECHANISMS OF METHANE IN MUNICIPAL SEWER SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 123-129,193. doi: 10.13205/j.hjgc.202206016

城镇污水管道系统甲烷产排特性及发生机制

doi: 10.13205/j.hjgc.202206016
详细信息
    作者简介:

    薛朝霞(1974-),女,讲师,主要研究方向为污水处理技术及资源化利用。xuezhx@hhu.edu.cn

    通讯作者:

    薛朝霞(1974-),女,讲师,主要研究方向为污水处理技术及资源化利用。xuezhx@hhu.edu.cn

EMISSION CHARACTERISTICS AND MECHANISMS OF METHANE IN MUNICIPAL SEWER SYSTEMS

  • 摘要: 城镇污水管道系统中产生的甲烷是城镇碳排放的主要来源之一,深入研究污水管道系统中甲烷的产排特性及发生机制对城镇污水提质增效和碳减排至关重要。综述了城镇污水管道系统中甲烷产排的研究现状,分析了甲烷产排的主要影响因素及发生机制,归纳了污水管道系统中甲烷产排的模拟评估方法。结果表明:污水管道内部环境、水质特性、水力条件等是影响甲烷产排的主要因素;生物膜-管道沉积物-污水多相界面的生化反应和传质过程是造成甲烷产排特性差异的关键原因;耦合管道水动力、颗粒物沉降过程、生化反应动力学、构建污水管道系统甲烷产排模型并应用于污水管道系统的甲烷排放测评与控制,是今后研究的发展方向。
  • [1] MASSON-DELMOTTE V P, ZHAI A, PIRANI S L, et al. IPCC, Climate Change 2021:The physical science basis.contribution of working group Ⅰ to the sixth assessment report of the intergovernmental panel on climate change[R].Cambridge University Press,2022.
    [2] USE. Global mitigation of non-CO2 greenhouse gases:2010-2030[R].2013.http://www.epa.gov/climatechange/EPAactivities/economics/nonco2mitigation.html.
    [3] HEIMANN M. Atmospheric science:enigma of the recent methane budget[J]. Nature, 2011,476(7359):157-158.
    [4] GUISASOLA A, HAAS D D, KELLER J, et al.Methane formation in sewer systems[J]. Water Research, 2008,42(6/7):1421-1430.
    [5] FOLEY J, YUAN Z G, LANT P. Dissolved methane in rising main sewer systems:field measurements and simple model development for estimating greenhouse gas emissions[J]. Water Science&Technology, 2009, 60(11):2963-2971.
    [6] WILLIS J, FILLMORE L, SHAH A, et al.Quantifying methane evolution from sewers:results from WERF/DeKalb phase 2-continuous monitoring[J].Proceedings of the Water Environment Federation,2011,12:3851-3858.
    [7] CHAOSAKUL T, KOOTTATEP T, POLPRASERT C. A model for methane production in sewers[J]. Journal of Environmental Science and Health, Part A. Toxic/hazardous Substances&.
    [8] KYUNG D, KIM D, YI S, et al.Estimation of greenhouse gas emissions from sewer pipeline system[J]. The International Journal of Life Cycle Assessment,2017, 22(12):1901-1911.
    [9] JIN P K, GU Y G, SHI X, et al.Nonnegligible greenhouse gases from urban sewer system[J]. Biotechnology for Biofuels,2019, 12:100.
    [10] 汪钟凝,陈浩,周雅菲,等.水力水质条件对重力排水管道碳排放的影响研究[J].能源环境保护, 2019, 33(3):15-22.
    [11] LIU Y W, NI B J, SHARMA K R, et al.Methane emission from sewers[J]. Science of the Total Environment, 2015,524:40-51.
    [12] 周瑜,黄建洪,宁平,等.昆明市污水排水系统产甲烷规律的模拟实验研究[J].环境工程学报,2013,7(9):3531-3536.
    [13] GUISASOLA A, SHARMA K R, KELLER J, et al.Development of a model for assessing methane formation in rising main sewers[J]. Water Research, 2009,43(11):2874-2884.
    [14] SUDARJANTO G, SHARMA K R, GUTIERREZ O, et al. A laboratory assessment of the impact of brewery wastewater discharge on sulfide and methane production in a sewer[J]. Water Science and Technology,2011,64(8):1614-1619.
    [15] 时红,郑杰荣.碳硫质量比及碳源种类调控重力排水管道内甲烷及硫化氢排放特征[J].科学技术与工程,2020,20(13):5437-5442.
    [16] 黄帅辰,左剑恶,陈磊,等,排水管道沉积物微生物群落及环境因子分析[J].中国环境科学, 2020, 40(12):5369-5374.
    [17] 徐警卫.重力流排水管道内碳硫比对甲烷和硫化氢产生以及碳转化的影响[D].重庆:重庆大学, 2017.
    [18] AI T, HE Q, XU J W, et al.A conceptual method to simultaneously inhibit methane and hydrogen sulfide production in sewers:the carbon metabolic pathway and microbial community shift[J]. Journal of Environmental Management, 2019, 246:119-127.
    [19] SUN J, NI B J, SHARMA K R, et al. Modelling the long-term effect of wastewater compositions on maximum sulfide and methane production rates of sewer biofilm[J]. Water Research, 2018, 129:58-65.
    [20] JIANG G M, SHARMA K R, YUAN Z G. Effects of nitrate dosing on methanogenic activity in a sulfide-producing sewer biofilm reactor[J]. Water Research, 2013, 47:1783-1792.
    [21] AUGUET O, PIJUAN M, GUASCH-BALCELLS H, et al. Implications of Downstream Nitrate Dosage in anaerobic sewers to control sulfide and methane emissions[J]. Water Research, 2015, 68:522-532.
    [22] 尹莹,迟子芳,黄华铮,等.氢气和氮气对厌氧甲烷降解过程及微生物多样性的影响[J].环境工程, 2020, 38(5):191-195.
    [23] MOHANAKRISHNAN J, GUTIERREZ O, SHARMA K R, et al. Impact of nitrate addition on biofilm properties and activities in rising main sewers[J]. Water Research, 2009, 43(17):4225-4237.
    [24] JIANG G M, GUTIERREZ O, YUAN Z G. The strong biocidal effect of free nitrous acid on anaerobic sewer biofilms[J]. Water Research, 2011, 45(12):3735-3743.
    [25] JIANG G M, GUTIERREZ O, SHARMA K R, et al. Optimization of intermittent, simultaneous dosage of nitrite and hydrochloric acid to control sulfide and methane productions in sewers[J]. Water Research, 2011, 45(18):6163-6172.
    [26] GUTIERREZ O, PARK D, SHARMA K R, et al.Effects of long-term pH elevation on the sulfate-reducing and methanogenic activities of anaerobic sewer biofilms[J]. Water Research, 2009, 43(9):2549-2557.
    [27] GUTIERREZ O, SUDARJANTO G, REN G, et al.Assessment of pH shock as a method for controlling sulfide and methane formation in pressure main sewer systems[J].Water Research, 2014, 48:569-578.
    [28] LOUIS S, VINCENT L, KELLY, et al.Reservoir surfaces as sources of greenhouse gases to the atmosphere:a global estimate[J]. Bioscience, 2000, 50(9):766-775.
    [29] LIU Y W, SHARMA K R, FLUGGEN M, et al.Online dissolved methane and total dissolved sulfide measurement in sewers[J].Water Research, 2015, 68:109-118.
    [30] SCHULZ S, CONRAD R. Influence of temperature on pathways to methane production in the permanently cold profundal sediment of Lake Constance[J]. Fems Microbiology Ecology, 1996, 20(1):1-14.
    [31] 张芳.新乡市卫河水体N2O和CH4溶存浓度的时空分布及排放通量研究[D].新乡:河南师范大学, 2013.
    [32] 艾海男,张青,何强,等.重力流排水管道内流态对生物膜菌落结构的影响[J].环境工程学报, 2017, 11(5):2845-2850.
    [33] NICOLELLA C, DIFELICE R, ROVATTI M.An experimental model of biofilm detachment in liquid fluidized bed biological reactors[J].Biotechnology&Bioengineering, 1996, 51(6):713-719.
    [34] CHEN H, YE J F, ZHOU Y F, et al.Variations in CH4 and CO2 productions and emissions driven by pollution sources in municipal sewers:an assessment of the role of dissolved organic matter components and microbiota[J]. Environmental Pollution, 2020, 263:114489.
    [35] WANG J H, ZHANG J, XIE H J, et al.Methane emissions from a full-scale A/A/O wastewater treatment plant[J]. Bioresource Technology, 2011, 102(9):5479-5485.
    [36] SUN J, HU S H, SHARMA K R, et al.Impact of reduced water consumption on sulfide and methane production in rising main sewers[J]. Journal of Environmental Management, 2015, 154:307-315.
    [37] LIU Y W, NI B J, GANIGU R, et al.Sulfide and methane production in sewer sediments[J]. Water Research, 2015, 70:350-359.
    [38] CHEN H, WANG Z N, LIU H, et al.Variable sediment methane production in response to different source-associated sewer sediment types and hydrological patterns:role of the sediment microbiome[J]. Water Research, 2021, 190:116670.
    [39] 石烜.城市污水管网污染物转化与生物代谢机制研究[D].西安:西安建筑科技大学,2018.
    [40] MANYI-LOH C E, MAMPHWELI S N, MEYER E L, et al. Microbial anaerobic digestion (bio-digesters) as an approach to the decontamination of animal wastes in pollution control and the generation of renewable energy[J]. International Journal of Environmental Research and Public Health, 2014, 10(9):4390-4417.
    [41] MCMAHON K D, ZHENG D D, STAMS A J M, et al.Microbial population dynamics during start-up and overload conditions of anaerobic digesters treating municipal solid waste and sewage sludge[J].Biotechnology and Bioengineering, 2010, 87(7):823-834.
    [42] MAYUMI D, MOCHIMARU H, TAMAKI H, et al.Methane production from coal by a single methanogen[J].Science, 2016, 354(6309):222-225.
    [43] ZHOU Z, ZHANG C J, LIU P F, et al.Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species[J]. Nature, 2022, 601(7892):257-262.
    [44] LIU Y C, WHITMAN W B.Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea[J].Annals of the New York Academy of Sciences, 2008, 1125:171-189.
    [45] 方晓瑜,李家宝,芮俊鹏,等.产甲烷生化代谢途径研究进展[J].应用与环境生物学报, 2015, 21(1):1-9.
    [46] SUN J, HU S H, SHARMA K R, et al.Stratified microbial structure and activity in sulfide-and methane-producing anaerobic sewer biofilms[J]. Applied&Environmental Microbiology, 2014, 80(22):7042-7052.
    [47] 承磊,郑珍珍,王聪.产甲烷古菌研究进展[J].微生物通报,2016, 43(5):1143-1164.
    [48] 王保玉,刘建民,韩作颖.产甲烷菌的分类及研究进展[J].基因组学与应用生物学, 2014, 33(2):418-425.
    [49] GOUDA H, ASHLEY R, BLANKSBY J, et al. Sewer solids and catchment area management based on life cycle concepts[C]//Techniques et stratégies durables pour la gestion des eaux urbaines par temps de pluie (5ème conférence internationale), Lyon, 2004.
    [50] SHARMA K R, YUAN Z G, HAAS D D, et al.Dynamics and dynamic modelling of H2S production in sewer systems[J]. Water Research, 2008, 42(10/11):2527-2538.
    [51] SHARMA K, DERLON N, HU S H, et al.Modeling the pH effect on sulfidogenesis in anaerobic sewer biofilm[J]. Water Research, 2014, 49:175-185.
    [52] SUN J, NI B J, SHARMA K R, et al.Modelling the long-term effect of wastewater compositions on maximum sulfide and methane production rates of sewer biofilm[J]. Water Research, 2018, 129:58-65.
    [53] 闫森,丁艳萍,郑才林,等.污水管道危害性气体浓度分布模型扩展与验证[J].环境工程学报, 2019, 13(5):1228-1236.
    [54] 赵楠.城市污水管网污染物迁移转化模拟研究[D].西安:西安建筑科技大学,2021.
  • 加载中
计量
  • 文章访问数:  257
  • HTML全文浏览量:  48
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-21
  • 网络出版日期:  2022-09-01
  • 刊出日期:  2022-09-01

目录

    /

    返回文章
    返回