COMPREHENSIVE IMPACT ASSESSMENT ON CARBON NEUTRALIZATION OF WASTEWATER TREATMENT PLANTS BASED ON HYBRID LCA
-
摘要: 在"碳达峰,碳中和"双碳目标背景下,污水处理行业碳中和规划中尚缺乏对工艺设计方案的定量化综合影响评价。为此,基于全生命周期(LCA)框架,建立全生命周期碳足迹、环境、经济综合影响评价模型(LCA-CEE),并利用该模型对2种不同污泥处理工艺下污水处理厂(A方案:污泥填埋;B方案:污泥-厨余垃圾共消化)以30年为限的建设阶段、运行阶段、拆除阶段中能耗、物耗、污染排放等方面进行综合影响评价与对比分析。结果表明:B方案利用共消化热电联产系统发电量高达38.9 MW·h,碳中和率达到133%,实现能源自给自足,经济效益较A方案提高1.6倍且环境影响显著减小。该LCA-CEE模型从全流程评价节能减排路径,为污水处理行业碳中和规划提供理论支撑。Abstract: Under the background of China's carbon peak and carbon neutralization goals,there is a lack of quantitative comprehensive impact assessment on process design in carbon-neutral planning of the wastewater treatment industry.Therefore,based on the LCA framework,a comprehensive impact assessment model of carbon footprint,environment,and economy of the whole life cycle (LCA-CEE) was established.And the model was used to analyse the effects of two different sludge treatment processes in sewage treatment plants (A plant:sludge landfill;B plant:sludge-kitchen waste co-digestion).The comprehensive impact assessment and comparative analysis were conducted on energy consumption,material consumption and pollution discharge in the construction,operation and demolition stages within 30 years.The results showed that the power generation of cogeneration system in plant B reached 38.9 MW·h,realizing energy self-sufficiency and with a carbon neutralization rate up to 133%.Compared with plant A,the economic benefit was 1.6 times higher and the environmental impact was significantly reduced.The LCA-CEE model developed in this study evaluated the energy-saving and emission reduction path from the whole process,providing theoretical support for carbon neutrality planning of the sewage treatment industry.
-
[1] 苏健,梁英波,丁麟,等.碳中和目标下我国能源发展战略探讨[J].中国科学院院刊,2021,36(9):1001-1009. [2] WANG K, NAKAKUBO T. Strategy for introducing sewage sludge energy utilization systems at sewage treatment plants in large cities in Japan:a comparative assessment[J]. Journal of Cleaner Production, 2021,316(659):128282. [3] 郝晓地,魏静,曹亚莉.美国碳中和运行成功案例:Sheboygan污水处理厂[J].中国给水排水,2014,30(24):1-6. [4] 郝晓地,金铭,胡沅胜.荷兰未来污水处理新框架:NEWs及其实践[J].中国给水排水,2014,30(20):7-15. [5] SINGH V, PHULERIA H C, CHANDEL M K. Estimation of energy recovery potential of sewage sludge in india:waste to watt approach[J]. Journal of Cleaner Production, 2020, 276(2/3):122538. [6] 郑秀君,胡彬.我国生命周期评价(LCA)文献综述及国外最新研究进展[J].科技进步与对策,2013,30(6):155-160. [7] 潘艺蓉,罗雨莉,刘俊新,等.义乌市城镇污水提标处理的环境与经济效益分析[J].环境工程学报,2021,15(4):11188-1198 [8] 郝晓地,于文波,王向阳,等.地下式污水处理厂全生命周期综合效益评价[J].中国给水排水,2021,37(7):1-10. [9] ZHUANG H, GUAN J, LEU S Y, et al. Carbon footprint analysis of chemical enhanced primary treatment and sludge incineration for sewage treatment in Hong Kong[J]. Journal of Cleaner Production, 2020, 272:122630. [10] HAO X D, LIU R B, HUANG X. Evaluation of the potential for operating carbon neutral WWTPs in China[J]. Water Research, 2015, 87:424-431. [11] 郝晓地,黄鑫,刘高杰,等.污水处理"碳中和"运行能耗赤字来源及潜能测算[J].中国给水排水,2014,30(20):1-6. [12] XU C Q, CHEN W, HONG J L.Life-cycle environmental and economic assessment of sewage sludge treatment in China[J]. Journal of Cleaner Production, 2014, 67:79-87. [13] 范秀磊,袁博,李学强,等.青岛麦岛污水处理厂污泥消化及热电联产运行管理经验[J].中国给水排水,2020,36(2):22-25. [14] 郝晓地,詹兴,曹达啓.剩余污泥厌氧共消化技术研究现状及应用趋势[J].环境工程学报,2016,10(12):6809-6818. [15] 田雨晴.餐厨垃圾与污泥混合厌氧消化及流变研究[D].北京:北京建筑大学,2021. [16] 孙飞,徐兴.热水解工艺强化低有机质污泥厌氧消化产气率的中试研究[J].生物化工,2021,7(3):105-107. [17] 龚运.沼气发电工程技术经济及环境效益分析[D].北京:华北电力大学. [18] 刘轶鋆,黄涛,黄晶晶,等.剩余污泥与餐厨垃圾协同厌氧发酵实现电能需求导向的沼气供应情景分析与仿真研究[J].环境科学学报,2020,40(5):1911-1920. [19] ZHANG Q H, WANG X C, XIONG J Q, et al. Application of life cycle assessment for an evaluation of wastewater treatment and reuse project-Case study of Xi'an, China[J]. Bioresource Technology, 2010, 101(5):1421-1425. [20] 张倩芸.基于LCA的污水处理系统的环境影响评价研究[D].大连:大连理工大学,2016. [21] 陈福仲,刘杰,陈晶晶.餐厨垃圾沼气热电联产经济分析[J].能源研究与利用,2020(2):30-33. [22] 罗小勇,黄希望,王大伟,等.生命周期评价理论及其在污水处理领域的应用综述[J].环境工程,2013,31(4):118-122. [23] MMA B, AA B, EM C, et al. Comprehensive evaluation of the carbon footprint components of wastewater treatment plants located in the Baltic Sea region[J]. Science of the Total Environment,2022, 806:150436. [24] IPCC. 2006 IPCC Guidelines for national greenhouse gas inventory[M].IGES,Japall,2006. [25] 郝晓地,王向阳,江瀚,等.污水处理环境综合效益评价方法及案例应用[J].中国给水排水,2019,35(6):6-15. [26] 梁凯铭.基于LCA的清洁生产审核方法研究[D].大连:大连理工大学, 2016. [27] 黄辉,张勤,傅斌.基于全生命周期成本理论的污水厂投资方案比较[J].中国给水排水,2013,29(1):101-104. [28] LIU B B, QI W, BING Z, et al. Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed, China[J]. Science of the Total Environment, 2013, 447:361-369. [29] 郝晓地.污水处理碳中和运行技术[M].北京:科学出版社, 2014. [30] 郝晓地,张益宁,李季,等.污水处理能源中和与碳中和案例分析[J].中国给水排水, 2021, 37(20):1-8. [31] 孙雪菲.基于LCA的污水处理厂环境影响评价及能源回收优化研究[D].延边:延边大学,2021. [32] CHEN G Y, WANG X T, LI J, et al. Environmental, energy, and economic analysis of integrated treatment of municipal solid waste and sewage sludge:a case study in China[J]. Science of the Total Environment, 2019, 647:1433-1443.
点击查看大图
计量
- 文章访问数: 437
- HTML全文浏览量: 96
- PDF下载量: 24
- 被引次数: 0