中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机器学习在碳基环境功能材料领域的应用研究进展

刘艳彪 乔建质 尤世界

庞艳, 冀强, 勾怀亮, 王伟伟, 冀贞泉, 胡雪莲, 叶新强, 彭晓瑛, 林峰. 二级UASB厌氧工艺在制药废水中的应用[J]. 环境工程, 2005, 23(4): 25-27. doi: 10.13205/j.hjgc.200504008
引用本文: 刘艳彪, 乔建质, 尤世界. 机器学习在碳基环境功能材料领域的应用研究进展[J]. 环境工程, 2022, 40(6): 182-187. doi: 10.13205/j.hjgc.202206023
LIU Yanbiao, QIAO Jianzhi, YOU Shijie. RESEARCH PROGRESS ON APPLICATIONS OF MACHINE LEARNING IN CARBON-BASED ENVIRONMENTAL FUNCTIONAL MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 182-187. doi: 10.13205/j.hjgc.202206023
Citation: LIU Yanbiao, QIAO Jianzhi, YOU Shijie. RESEARCH PROGRESS ON APPLICATIONS OF MACHINE LEARNING IN CARBON-BASED ENVIRONMENTAL FUNCTIONAL MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 182-187. doi: 10.13205/j.hjgc.202206023

机器学习在碳基环境功能材料领域的应用研究进展

doi: 10.13205/j.hjgc.202206023
基金项目: 

国家自然科学基金面上项目(52170068)

详细信息
    作者简介:

    刘艳彪(1982-),男,博士,教授,主要从事环境纳米技术方向的研究。yanbiaoliu@dhu.edu.cn

    通讯作者:

    刘艳彪(1982-),男,博士,教授,主要从事环境纳米技术方向的研究。yanbiaoliu@dhu.edu.cn

RESEARCH PROGRESS ON APPLICATIONS OF MACHINE LEARNING IN CARBON-BASED ENVIRONMENTAL FUNCTIONAL MATERIALS

  • 摘要: 随着环境功能材料领域产生的数据量及其数据复杂性急剧增加,高成本、长周期的传统实验手段已无法迎合目前功能材料的发展趋势。近年来迅速发展的机器学习能对数据进行深入挖掘和解析,有望为此类问题提供有效的解决方案。机器学习具备效率高、精度高等优势,有效弥补了传统"试错"方式的不足。介绍了机器学习的基本工作原理和算法,从预测理化性质、辅助微观表征和指导新型材料合成3个方面简述了机器学习在环境碳基功能材料领域中的应用研究进展,分析了机器学习在该领域的问题与挑战,展望了机器学习方法在环境碳基功能材料领域的前景与发展趋势。
  • [1] JORDAN M I, MITCHELL T M. Machine learning:trends, perspectives, and prospects[J]. Science, 2015, 349(6245):255-260.
    [2] YAN X L, SEDYKH A, WANG W Y, et al. Construction of a web-based nanomaterial database by big data curation and modeling friendly nanostructure annotations[J]. Nature Communications, 2020, 11(1):2519.
    [3] BUTLER K T, DAVIES D W, CARTWRWRIGHT H, et al. Machine learning for molecular and materials science[J]. Nature, 2018, 559(7715):547-555.
    [4] MITCHELL T M. Machine Learning[M]. London:McGraw-Hill Education-Eroupe, 1997.
    [5] MASSIMO B, DAVIDE M, MATTIA N, et al. Machine learning in manufacturing and industry 4.0 applications[J]. International Journal of Production Research, 2021, 59(16):4773-4778.
    [6] ZHANG S W. Application of machine learning in animal disease analysis and prediction[J]. Current Bioinformatics, 2021, 16(7):972-982.
    [7] ROBERT J M, STEPHEN R G, CRAIG G N, et al. Applying machine learning to agricultural data[J]. Computers and Electronics in Agriculture, 1995, 4(12):275-293.
    [8] FANG J, SWAIN A, UNNI R, et al. Decoding optical data with machine learning[J]. Laser&Photonics Reviews, 2020, 15(2):2000422.
    [9] ZHONG S F, ZHANG K, BAGHERI M, et al. Machine learning:new ideas and tools in environmental science and engineering[J]. Environmental Science&Technology, 2021, 55(19):12741-12754.
    [10] LONG F, WANG L G, CAI W F, et al. Predicting the performance of anaerobic digestion using machine learning algorithms and genomic data[J]. Water Research, 2021, 199:117182.
    [11] HUANG R X, MA C X, MA J, et al. Machine learning in natural and engineered water systems[J]. Water Research, 2021, 205:117666.
    [12] OBENG-GYAS E, ROOSTAEI J, GIBSON J M. Lead distribution in urban soil in a medium-sized city:household-scale analysis[J]. Environmental Science&Technology, 2021, 55(6):3696-3705.
    [13] TAPAVICZA E, RUDORFF G F, DAVID O D H, et al. Elucidating an atmospheric brown carbon species-Toward supplanting chemical intuition with exhaustive enumeration and machine learning[J]. Environmental Science&Technology, 2021, 55(12):8447-8457.
    [14] ZHU J J, CHEN Y C, SHIE R H, et al. Predicting carbonaceous aerosols and identifying their source contribution with advanced approaches[J]. Chemosphere, 2021, 266:128966.
    [15] KUSDHANY M I M, STEPHEN M L. New insights into hydrogen uptake on porous carbon materials via explainable machine learning[J]. Carbon, 2021, 179:190-201.
    [16] ZHANG K, ZHONG S F, ZHANG H C. Predicting aqueous adsorption of organic compounds onto biochars, carbon nanotubes, granular activated carbons, and resins with machine learning[J]. Environmental Science&Technology, 2020, 54(11):7008-7018.
    [17] MORTAZAVI B, RAJABPOUR A, ZHUANG X Y, et al. Exploring thermal expansion of carbon-based nanosheets by machine-learning interatomic potentials[J]. Carbon, 2022, 186:501-508.
    [18] CHENG Q, BEN M, DANIEL H, et al. A comprehensive assessment of empirical potentials for carbon materials[J]. APL Materials, 2021, 9(6):061102.
    [19] LUO Q X, HOLM E A, WANG C. A transfer learning approach for improved classification of carbon nanomaterials from TEM images[J]. Nanoscale Advances, 2021,3:206-213.
    [20] MASTON T, FARFEL M, LEVIN N, et al. Machine learning and computer vision for the classification of carbon nanotube and nanofiber structures from transmission electron microscopy data[J]. Microscopy and Microanalysis, 2019, 25(S2):198-199.
    [21] DERINGER V L, MERLET C, HU Y C, et al. Towards an atomistic understanding of disordered carbon electrode materials†[J]. Chemical Communications, 2018,54:5988-5991.
    [22] ANJA A, VOLKER L D, SAMI S, et al. Understanding X-ray spectroscopy of carbonaceous materials by combining experiments, density functional theory, and machine learning. Part Ⅰ:Fingerprint Spectra[J]. Chemistry of Materials, 2019, 31(22):9243-9255.
    [23] ANJA A, VOLKER L D, SAMI S, et al. Understanding X-ray spectroscopy of carbonaceous materials by combining experiments, density functional theory, and machine learning. Part Ⅱ:Quantitative Fitting of Spectra[J]. Chemistry of Materials, 2019, 31(22):9256-9267.
    [24] TESSONNIER J P, SU D S. Recent progress on the growth mechanism of carbon nanotubes:a review[J]. ChemSusChem, 2011, 4(7):824-847.
    [25] BECKHAM J L, WYSS K M, XIE Y C, et al. Machine learning guided synthesis of flash graphene[J]. Advanced Materials, 2022, 34(12):2106506.
    [26] YU Z C, HUANG W M. Accelerating optimizing the design of carbon-based electrocatalyst via machine learning[J]. Electroanalysis, 2021, 33:1-10.
    [27] 何峰,张静静,陈奕君,等.电化学氧还原反应合成H2O2碳基催化剂研究进展[J].储能科学与技术, 2021, 10(6):1963-1976.
    [28] HAN Y, TANG B J, WANG L, et al. Machine-learning-driven synthesis of carbon dots with enhanced quantum yields[J]. ACS Nano, 2020, 14(11):14761-14768.
    [29] KUHN M, JOHNSON K. Applied Predictive Modeling[M]. Springer, 2013.
    [30] SHORTEN C, KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1):60.
    [31] VARMA S, SIMON R. Bias in error estimation when using cross-validation for model selection[J]. BMC Bioinformatics, 2006, 7(1):91.
    [32] BVHLMANN P, GEER S V. Statistics for high-dimensional data:methods, theory and applications[M]. Springer Science&Business Media, 2011.
    [33] REXSTAD E, INNIS G S. Model simplification-three applications[J]. Ecological Modelling, 1985, 27(1/2):1-13.
    [34] YAO Y, ROSASCO L, CAPONNETTO A. On early stopping in gradient descent learning[J]. Constructive Approximation, 2007, 26(2):289-315.
  • 期刊类型引用(2)

    1. 刘晓,王思迈,卢磊,陈美祝,翟跃,崔素萍. 机器学习预测混凝土材料耐久性的研究进展. 硅酸盐学报. 2023(08): 2062-2073 . 百度学术
    2. 赵蒙,周晖,贵宾华,汪科良. 金属双极板表面改性碳基涂层研究进展. 表面技术. 2023(11): 182-199 . 百度学术

    其他类型引用(2)

  • 加载中
计量
  • 文章访问数:  277
  • HTML全文浏览量:  35
  • PDF下载量:  10
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-01-17
  • 网络出版日期:  2022-09-01
  • 刊出日期:  2022-09-01

目录

    /

    返回文章
    返回