中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机器学习在碳基环境功能材料领域的应用研究进展

刘艳彪 乔建质 尤世界

刘艳彪, 乔建质, 尤世界. 机器学习在碳基环境功能材料领域的应用研究进展[J]. 环境工程, 2022, 40(6): 182-187. doi: 10.13205/j.hjgc.202206023
引用本文: 刘艳彪, 乔建质, 尤世界. 机器学习在碳基环境功能材料领域的应用研究进展[J]. 环境工程, 2022, 40(6): 182-187. doi: 10.13205/j.hjgc.202206023
LIU Yanbiao, QIAO Jianzhi, YOU Shijie. RESEARCH PROGRESS ON APPLICATIONS OF MACHINE LEARNING IN CARBON-BASED ENVIRONMENTAL FUNCTIONAL MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 182-187. doi: 10.13205/j.hjgc.202206023
Citation: LIU Yanbiao, QIAO Jianzhi, YOU Shijie. RESEARCH PROGRESS ON APPLICATIONS OF MACHINE LEARNING IN CARBON-BASED ENVIRONMENTAL FUNCTIONAL MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 182-187. doi: 10.13205/j.hjgc.202206023

机器学习在碳基环境功能材料领域的应用研究进展

doi: 10.13205/j.hjgc.202206023
基金项目: 

国家自然科学基金面上项目(52170068)

详细信息
    作者简介:

    刘艳彪(1982-),男,博士,教授,主要从事环境纳米技术方向的研究。yanbiaoliu@dhu.edu.cn

    通讯作者:

    刘艳彪(1982-),男,博士,教授,主要从事环境纳米技术方向的研究。yanbiaoliu@dhu.edu.cn

RESEARCH PROGRESS ON APPLICATIONS OF MACHINE LEARNING IN CARBON-BASED ENVIRONMENTAL FUNCTIONAL MATERIALS

  • 摘要: 随着环境功能材料领域产生的数据量及其数据复杂性急剧增加,高成本、长周期的传统实验手段已无法迎合目前功能材料的发展趋势。近年来迅速发展的机器学习能对数据进行深入挖掘和解析,有望为此类问题提供有效的解决方案。机器学习具备效率高、精度高等优势,有效弥补了传统"试错"方式的不足。介绍了机器学习的基本工作原理和算法,从预测理化性质、辅助微观表征和指导新型材料合成3个方面简述了机器学习在环境碳基功能材料领域中的应用研究进展,分析了机器学习在该领域的问题与挑战,展望了机器学习方法在环境碳基功能材料领域的前景与发展趋势。
  • [1] JORDAN M I, MITCHELL T M. Machine learning:trends, perspectives, and prospects[J]. Science, 2015, 349(6245):255-260.
    [2] YAN X L, SEDYKH A, WANG W Y, et al. Construction of a web-based nanomaterial database by big data curation and modeling friendly nanostructure annotations[J]. Nature Communications, 2020, 11(1):2519.
    [3] BUTLER K T, DAVIES D W, CARTWRWRIGHT H, et al. Machine learning for molecular and materials science[J]. Nature, 2018, 559(7715):547-555.
    [4] MITCHELL T M. Machine Learning[M]. London:McGraw-Hill Education-Eroupe, 1997.
    [5] MASSIMO B, DAVIDE M, MATTIA N, et al. Machine learning in manufacturing and industry 4.0 applications[J]. International Journal of Production Research, 2021, 59(16):4773-4778.
    [6] ZHANG S W. Application of machine learning in animal disease analysis and prediction[J]. Current Bioinformatics, 2021, 16(7):972-982.
    [7] ROBERT J M, STEPHEN R G, CRAIG G N, et al. Applying machine learning to agricultural data[J]. Computers and Electronics in Agriculture, 1995, 4(12):275-293.
    [8] FANG J, SWAIN A, UNNI R, et al. Decoding optical data with machine learning[J]. Laser&Photonics Reviews, 2020, 15(2):2000422.
    [9] ZHONG S F, ZHANG K, BAGHERI M, et al. Machine learning:new ideas and tools in environmental science and engineering[J]. Environmental Science&Technology, 2021, 55(19):12741-12754.
    [10] LONG F, WANG L G, CAI W F, et al. Predicting the performance of anaerobic digestion using machine learning algorithms and genomic data[J]. Water Research, 2021, 199:117182.
    [11] HUANG R X, MA C X, MA J, et al. Machine learning in natural and engineered water systems[J]. Water Research, 2021, 205:117666.
    [12] OBENG-GYAS E, ROOSTAEI J, GIBSON J M. Lead distribution in urban soil in a medium-sized city:household-scale analysis[J]. Environmental Science&Technology, 2021, 55(6):3696-3705.
    [13] TAPAVICZA E, RUDORFF G F, DAVID O D H, et al. Elucidating an atmospheric brown carbon species-Toward supplanting chemical intuition with exhaustive enumeration and machine learning[J]. Environmental Science&Technology, 2021, 55(12):8447-8457.
    [14] ZHU J J, CHEN Y C, SHIE R H, et al. Predicting carbonaceous aerosols and identifying their source contribution with advanced approaches[J]. Chemosphere, 2021, 266:128966.
    [15] KUSDHANY M I M, STEPHEN M L. New insights into hydrogen uptake on porous carbon materials via explainable machine learning[J]. Carbon, 2021, 179:190-201.
    [16] ZHANG K, ZHONG S F, ZHANG H C. Predicting aqueous adsorption of organic compounds onto biochars, carbon nanotubes, granular activated carbons, and resins with machine learning[J]. Environmental Science&Technology, 2020, 54(11):7008-7018.
    [17] MORTAZAVI B, RAJABPOUR A, ZHUANG X Y, et al. Exploring thermal expansion of carbon-based nanosheets by machine-learning interatomic potentials[J]. Carbon, 2022, 186:501-508.
    [18] CHENG Q, BEN M, DANIEL H, et al. A comprehensive assessment of empirical potentials for carbon materials[J]. APL Materials, 2021, 9(6):061102.
    [19] LUO Q X, HOLM E A, WANG C. A transfer learning approach for improved classification of carbon nanomaterials from TEM images[J]. Nanoscale Advances, 2021,3:206-213.
    [20] MASTON T, FARFEL M, LEVIN N, et al. Machine learning and computer vision for the classification of carbon nanotube and nanofiber structures from transmission electron microscopy data[J]. Microscopy and Microanalysis, 2019, 25(S2):198-199.
    [21] DERINGER V L, MERLET C, HU Y C, et al. Towards an atomistic understanding of disordered carbon electrode materials†[J]. Chemical Communications, 2018,54:5988-5991.
    [22] ANJA A, VOLKER L D, SAMI S, et al. Understanding X-ray spectroscopy of carbonaceous materials by combining experiments, density functional theory, and machine learning. Part Ⅰ:Fingerprint Spectra[J]. Chemistry of Materials, 2019, 31(22):9243-9255.
    [23] ANJA A, VOLKER L D, SAMI S, et al. Understanding X-ray spectroscopy of carbonaceous materials by combining experiments, density functional theory, and machine learning. Part Ⅱ:Quantitative Fitting of Spectra[J]. Chemistry of Materials, 2019, 31(22):9256-9267.
    [24] TESSONNIER J P, SU D S. Recent progress on the growth mechanism of carbon nanotubes:a review[J]. ChemSusChem, 2011, 4(7):824-847.
    [25] BECKHAM J L, WYSS K M, XIE Y C, et al. Machine learning guided synthesis of flash graphene[J]. Advanced Materials, 2022, 34(12):2106506.
    [26] YU Z C, HUANG W M. Accelerating optimizing the design of carbon-based electrocatalyst via machine learning[J]. Electroanalysis, 2021, 33:1-10.
    [27] 何峰,张静静,陈奕君,等.电化学氧还原反应合成H2O2碳基催化剂研究进展[J].储能科学与技术, 2021, 10(6):1963-1976.
    [28] HAN Y, TANG B J, WANG L, et al. Machine-learning-driven synthesis of carbon dots with enhanced quantum yields[J]. ACS Nano, 2020, 14(11):14761-14768.
    [29] KUHN M, JOHNSON K. Applied Predictive Modeling[M]. Springer, 2013.
    [30] SHORTEN C, KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1):60.
    [31] VARMA S, SIMON R. Bias in error estimation when using cross-validation for model selection[J]. BMC Bioinformatics, 2006, 7(1):91.
    [32] BVHLMANN P, GEER S V. Statistics for high-dimensional data:methods, theory and applications[M]. Springer Science&Business Media, 2011.
    [33] REXSTAD E, INNIS G S. Model simplification-three applications[J]. Ecological Modelling, 1985, 27(1/2):1-13.
    [34] YAO Y, ROSASCO L, CAPONNETTO A. On early stopping in gradient descent learning[J]. Constructive Approximation, 2007, 26(2):289-315.
  • 加载中
计量
  • 文章访问数:  235
  • HTML全文浏览量:  25
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-17
  • 网络出版日期:  2022-09-01
  • 刊出日期:  2022-09-01

目录

    /

    返回文章
    返回