PROSPECTS OF SIMULATION METHODS FOR WATERSHED AQUATIC ECOSYSTEM INTEGRITY
-
摘要: 水生态系统完整性变化模拟是流域水生态退化诊断、风险预警和修复重建的基础。受到多种环境压力的叠加影响,水生态系统完整性状态具有累积性、复合性和滞后性的响应特征,难以采用常规静态实验和水质模型进行表征和预测。梳理了国内外该领域最新进展,按照水生生物、生态系统动力学、栖息地适宜性、统计经验、流域水系统耦合等5类模型,阐明了不同类型模型的基本原理、适用性和应用案例。结果表明:我国环境管理亟需水生态系统完整性模拟工具支撑,应围绕该领域开展重大科学基础研究,突破河湖水生生物模拟预测和多尺度耦合关键技术,加快构建具有自主知识产权的水生态系统完整性模型库和参数库,推动建设我国流域水生态系统模拟器大科学装置,支撑构建长江、黄河等重点河流水生态系统综合管理体系。Abstract: Aquatic ecosystem simulation is the basis of the diagnosis of water ecological degradation,risk early-warning,and restoration.Under the superposition of various environmental pressures,the water ecosystem integrity state often shows the response characteristics of accumulation,complexity and lag,which is difficult to be characterized and predicted by conventional static experiments and water quality models.In this paper,the latest progress of water ecological simulation was reviewed,and the basic principles,applicability and application cases of different models were clarified according to five types of models including aquatic biology,ecosystem dynamics,habitat suitability,statistical experience and watershed water system coupling.Results showed that China's environmental management urgently needs the support of water ecosystem integrity simulation tools.We should carry out major basic scientific research in this field,break through the key technologies of river and lake aquatic biological simulation prediction and multi-scale coupling,accelerate the construction of water ecosystem integrity model database and parameters'database with independent intellectual property rights,promote the construction of large scientific devices of river basin water ecosystem simulation in China,and support the construction of comprehensive water ecosystem management system of key rivers such as the Yellow River and the Yangtze River.
-
[1] 张远,夏瑞,张孟衡,等.水利工程背景下河流水华暴发成因分析及模拟研究[J].环境科学研究,2017,30(8):1163-1173. [2] 倪晋仁,刘元元.河流健康诊断与生态修复[J].中国水利,2006(13):4-10. [3] 王瑞玲,连煜,王新功,等.黄河流域水生态保护与修复总体框架研究[J].人民黄河,2013,35(10):107-110,114. [4] 世界自然基金会,中国科学院水生生物研究所,中国科学院地理科学与资源研究所,等.长江生命力报告[EB/OL]. 2020. https://www. sgpjbg. com/baogao/20437. html. [5] 陈进.长江健康评估与保护实践[J].长江科学院院报,2020,37(2):1-6,20. [6] 陈文静,张燕萍,赵春来,等.近年长江湖口江段鱼类群落组成及多样性[J].长江流域资源与环境,2012,21(6):684-691. [7] 赵亚辉,邢迎春,吕彬彬,等.黄河流域淡水鱼类多样性和保护[J].生物多样性,2020,28(12):1496-1510. [8] 蒋晓辉,王洪铸.黄河干流水生态系统结构特征沿程变化及其健康评价[J].水利学报,2012,43(8):991-998. [9] 张远,江源等.中国重点流域水生态系统健康评价[M].北京:科学出版社,2019. [10] 张华,骆永明.美国流域生态健康评价体系的发展和实践[J].应用生态学报,2013,24(7):2063-2072. [11] 孟伟,张远,郑丙辉.水环境质量基准、标准与流域水污染物总量控制策略[J].环境科学研究,2006,19(3):1-6. [12] 张晓玲,梁中耀,刘永,等.流域水质目标管理的风险识别与对策研究[J].环境科学学报,2014,34(10):2660-2667. [13] FAN J T, WANG S P, LI H, et al. Modeling the ecological status response of rivers to multiple stressors using machine learning:a comparison of environmental DNA metabarcoding and morphological data[J]. Water Research, 2020, 183:116004. [14] ZHAO Y W, LIU Y X, WU S R, et al. Construction and application of an aquatic ecological model for an emergent-macrophyte-dominated wetland:a case of Hanshiqiao wetland[J]. Ecological Engineering, 2016, 96:214-223. [15] 董哲仁.河流生态系统研究的理论框架[J].水利学报,2009,40(2):129-137. [16] 董哲仁,孙东亚,赵进勇,等.河流生态系统结构功能整体性概念模型[J].水科学进展,2010,21(4):550-559. [17] GRAHAM M. Modern theory of exploiting a fishery, and application to North Sea trawling[J]. ICES Journal of Marine Science, 193510(3):264-274. [18] FLEMING R H. The control of diatom populations by grazing[J]. Ices Journal of Marine Science, 1939, 14(2):210-227. [19] 刘永,蒋青松,梁中耀,等.湖泊富营养化响应与流域优化调控决策的模型研究进展[J].湖泊科学,2021,33(1):49-63. [20] VOLLENWEIDER R A. Input-output models[J]. Aquatic Sciences, 1975, 37(1):53-84. [21] JACQUES M. Methods for the cultivation of micro-organisms:US2822319[P]. 1958-02-04. https://www.freepatentsonline.com/2822319.pdf. [22] DROOP M R. Vitamin B12 and marine ecology. Ⅳ. The kinetics of uptake, growth and inhibition in monochrysis lutheri[J]. Journal of the Marine Biological Association of the UK, 1968, 48(3):689-733. [23] CHEN C W, ORLOB G T. Ecological simulation for aquatic environments[J]. System Analysis and Simulation in Ecology, 1975,3:475-588. [24] SMITH T, HUSTON M. A theory of the spatial and temporal dynamics of plant communities[J]. Vegetatio, 1989, 83(1/2):49-69. [25] 申霞, LI B L.生态模型在河口管理中的应用研究综述[J].水科学进展,2015,26(5):739-750. [26] MALTHUS T R. An essay on the principle of population[M]. Cambridge:Cambridge University Press, 1992. [27] LOTKA A J. Elements of physical biology[M]. Baltimore:Williams&Wilkins Company,1925. [28] VOLTERRA V. VARIAZIONI E. Fluttuazioni del numero d'individui in specie animali conviventi[J]. Memoroo Acadamei Linceii, 1926, 2:31-113. [29] 李典谟,马祖飞.展望数学生态学与生态模型的未来[J].生态学报,2000,20(6):1083-1089. [30] 周波.基于EwE模型的草鱼综合养殖池塘生态系统研究[D].青岛:中国海洋大学,2015. [31] RICKER W E. 11 Growth rates and models[J]. Fish Physiology, 1979, 8(8):677-743. [32] DEANGELIS D L, GROSS L J. Individual-based models and approaches in ecology[M]. New York:Chapman and Hall, 1992. [33] URSIN E. A mathematical model of some aspects of fish growth, respiration, and mortality[J]. Journal of the Fisheries Research Board of Canada, 1967, 24(11):2355-2453. [34] ERDÖS P, RÉNYI A. On the evolution of random graphs[J]. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 1960, 5:17-60. [35] STEELE J H. Community Food Webs:Data and Theory[J]. Science, 1991,251(4994):686-688. [36] CATTIN M F, BERSIER L F, BANASEK-RLCHTER C, et al. Phylogenetic constraints and adaptation explain food-web structure[J]. Nature,2004,427:835-839. [37] WILLIAMS R J, MARTINEZ N D. Simple rules yield complex food webs[J]. Nature, 2000, 404:180-183. [38] 刘好真,李祥付,刘懂,等.浙江象山东部海域夏季大型底栖动物优势种群和生态位[J].海洋与湖沼,2018,49(4):873-882. [39] ABRANTES K G, BARNETT A, MARWICK T R, et al. Importance of terrestrial subsidies for estuarine food webs in contrasting east African catchments[J]. Ecosphere, 2013, 4:91-97. [40] 朱耿平,刘国卿,卜文俊,等.生态位模型的基本原理及其在生物多样性保护中的应用[J].生物多样性,2013,21(1):90-98. [41] 肖麒,章梦婷,吴翼,等.基于生态位模型的外来入侵种克氏原螯虾在中国的适生区预测[J].应用生态学报,2020,31(1):309-318. [42] 李宏群,李宇轩,刘晓莉,等.基于Maxent生态位模型的水葫芦在中国的适生区预测[J].生态科学,2018,37(3):143-147. [43] HANNON B. The structure of ecosystems[J]. Journal of Theoretical Biology, 1973, 41(3):535-546. [44] CHRISTENSEN V, PAULY D. ECOPATH Ⅱ:a software for balancing steady-state ecosystem models and calculating network characteristics[J]. Ecological Modelling, 1992, 61(3/4):169-185. [45] MANN K H, FIELD J G, WULFF F. Network Analysis in Marine Ecology:an Assessment[M]//Network Analysis in Marine Ecology. Springer, Berlin, Heidelberg, 1989:259-282. [46] STEFANO A, CRISTINA B. Wand:an ecological network analysis user-friendly tool[J]. Environmental Modelling and Software, 2004, 19:337-340. [47] FATH B D, BORETT S R. A Matlab function for network environ analysis[J]. Environmental Modelling and Software, 2006, 21:375-405. [48] KAZANCI C. Econet:a new software for ecological modelling, simulation, and network analysis[J]. Ecological Modelling, 2007, 208:3-8. [49] BORRETT S R, LAU M K. enaR:An r package for ecosystem network analysis[J]. Methods in Ecology and Evolution, 2014, 5(11):1206-1213. [50] MCGILL L M, GERIG B S, CHALONER D T,et al.An ecosystem model for evaluating the effects of introduced Pacific salmon on contaminant burdens of stream-resident fish[J]. Ecological Modelling, 2017, 355:39-48. [51] CHRISTENSEN V, PAULY D. Fish production, catches and the carrying capacity of the world oceans[J]. NAGA, 1995, 18(3):34-40. [52] 李华,沈洪艳,李双江,等.富营养化对白洋淀底栖-浮游耦合食物网结构和功能的影响[J].生态学报,2018,38(6):2017-2030. [53] SUSINI I, TODD V. Predictive capacity of Ecopath with Ecosim:model performance and ecological indicators'response to imprecision[J]. Environmental Modelling&Software, 2021, 143:1-17. [54] POLOVINA J J. Model of a coral reef ecosystem:the ECOPATH model and its application to French Frigate Shoals[J]. Coral Reefs, 1984, 3:1-11. [55] WALTERS C J, VILLY C, MARTELL S J, et al. Possible ecosystem impacts of applying MSY policies from single-species assessment[J]. Ices Journal of Marine Science, 2005(3):558-568. [56] 李燕子,赵运林,董萌.湖泊湿地富营养化模型的研究进展[J].安徽农业科学,2011(1):3. [57] CHEN C W. Concepts and utilities of ecologic mode[J]. Journal of the Sanitary Engineering Division, Proceedings of the American Society of Civil Engineers, 1970, 96:1085-1097. [58] DITORO D M, CONNOR D J, THOMANN R V. A Dynamic model of phytoplankton population in the Sacramento San Joaquin Delta[J]. Advances in Chemistry, American Chemical Society, 1971, 106:131-180. [59] 李云生,刘伟江,吴悦颖,等.美国水质模型研究进展综述[J].水利水电技术,2006(2):68-73. [60] SCAVIA D, PARK R A. Documentation of selected constructs and parameter values in the aquatic model CLEANER[J]. Ecological Modelling, 1976, 2(1):33-58. [61] NYHOLM, NIELS. A simulation model for phytoplankton growth and nutrient cycling in eutrophic, shallow lakes[J]. Ecological Modelling, 1978(2):279-310. [62] VIRTANEN M, KOPONEN J, DAHLBO K, et al. Three-dimensional water quality-transport model compared with field observations[J]. Ecological Modelling, 1986, 31(2):185-199. [63] 张永泽,刘玉生,郑丙辉.火用(Exergy)在湖泊生态系统建模中的应用[J].湖泊科学,1997(9):75-81. [64] 郑丙辉,张永泽.滇池生态动力学模型的改进[J].环境科学研究,1994,7(4):1-6. [65] 刘元波,陈伟民.太湖梅梁湾藻类生态模拟与蓝藻水华治理对策分析[J].湖泊科学,1998,10(4):53-59. [66] 孙颖,陈肇和,范晓娜.河流及水库水质模型与通用软件综述[J].水资源保护,2001,4(2);7-11. [67] DITORO D M, FITZPATRICK J J, THOMANN R V. Documentation for water quality analysis simulation program (WASP) and model verification program (MVP)[J]. Proc Spie, 1983, 34(5):4-10. [68] 王飞儿,杨佳,李亚男,等.基于沉积物磷释放的WASP水质模型改进研究[J].环境科学学报,2013,33(12):3301-3308. [69] JOHNSTON J M, BARBER M C, WOLFE K, et al. An integrated ecological modeling system for assessing impacts of multiple stressors on stream and riverine ecosystem services within river basins[J]. Ecological Modelling, 2017, 354:104-114. [70] XIE H, CHEN L, SHEN Z Y. Assessment of agricultural best management practices using models:current issues and future perspectives[J]. Water, 2015, 7(3):1088-1108. [71] 陈美丹,姚琪,徐爱兰. WASP水质模型及其研究进展[J].水利科技与经济,2006(7):420-422,426. [72] ROMERO J R, HIPSEY M R, ANTENUCCI J P. Computational aquatic ecosystem dynamics model[M]. US:Science Manual, 2004:16-46. [73] 陈彧,钱新,张玉超.生态动力学模型在太湖水质模拟中的应用[J].环境保护科学,2010,36(4):6-9. [74] Danish Hydraulic Institute. MIKE 11 user guide[R]. Denmark,Copenhagen:Danish Hydraulic Institute,2017. [75] GONG R, XU L G, WANG D G, et al. Water quality modeling for a typical urban lake based on the EFDC model[J]. Environmental Modeling&Assessment, 2016, 21(5):643-655. [76] 刘夏明,李俊清,豆小敏,等. EFDC模型在河口水环境模拟中的应用及进展[J].环境科学与技术,2011,34(增刊1):136-140,360. [77] PARK R A, CLOUGH J S, WELLMAN M C, et al. Nutrient criteria development with a linked modeling Aquatox[J]. National TMDL Science and Policy, 2005(18):885-902. [78] PESCE M, CRITTO A, TORRESAN S, et al. Modeling climate change impacts on nutrients and primary production in coastal waters[J]. Science of the Total Environment, 2018, 628:919-937. [79] JANSE J H, ALDENBERG T. Modelling phosphorus fluxes in the hypertrophic Loosdrecht Lakes[J]. Hydrobiological Bulletin, 1990, 24(1):69-89. [80] 张笑欣,于瑞宏,张宇瑾,等.浅水湖泊稳态转换模型PCLake研究进展[J].水资源保护,2017,33(3):19-24. [81] MOOIJ W M, JANSE J H, de SENERPONT DOMIS L, et al. Predicting the effect of climate change on temperate shallow lakes with the ecosystem model PCLake[J]. Hydrobiologia, 2007, 584(1):443-454. [82] 胡文,王济,李春华,等.浅水湖泊模型PCLake及其应用进展[J].生态与农村环境学报,2019,35(6):681-688. [83] 赵进勇,董哲仁,孙东亚.河流生物栖息地评估研究进展[J].科技导报,2008(17):84-90. [84] BOVEE K D. Guide to stream habitat analysis using the instream flow incremental methodology[R]. Washington D C:USDI Fish and Wildlife Service, 1982. [85] PARSONS M, NORRIS R H. The effect of habitat-specific sampling on biological assessment of water quality using a predictive model[J]. Freshwater Biology, 1996, 36:419-434. [86] STEINFELD C, KINGSFORD R, WEBSTER E, et al. A simulation tool for managing environmental flows in regulated rivers[J]. Environmental Modelling and Software, 2015, 73:117-132. [87] CHOU W C, CHUANG M D. Habitat evaluation using suitability index and habitat type diversity:a case study involving a shallow forest stream in central Taiwan[J]. Environmental Monitoring and Assessment, 2010, 172(1/2/3/4):689-704. [88] 孙嘉宁,张土乔,DAVID Z,等.白鹤滩水库回水支流的鱼类栖息地模拟评估[J].水利水电技术,2013,44(10):17-22. [89] EDMONDS D A, SLINGERLAND R L. Significant effect of sediment cohesion on delta morphology[J]. Nature Geoscience, 2010, 3(2):105-109. [90] 刘思伟.基于优先保护鱼类的清潩河栖息地评估及恢复技术应用研究[D].郑州:郑州大学,2020. [91] 石瑞花,许士国.河流生物栖息地调查及评估方法[J].应用生态学报,2008,19(9):2081-2086. [92] HAYES J W, JOWETT I G. Microhabitat models of large drift-feeding brown trout in Three New Zealand Rivers[J]. North American Journal of Fisheries Management, 1994, 14(4):710-725. [93] 李若男,陈求稳,吴世勇,等.模糊数学方法模拟水库运行影响下鱼类栖息地的变化[J].生态学报,2010,30(1):10. [94] BAPTIST M, SILVERT W, ANGEL D L, et al. Assessing benthic impacts of fish farming with an expert system based on neural networks[C]//Wallace G T, Braasch E F. Proceedings of the Gulf of Maine Ecosystem Dynamics Scientific Symposium and Workshop, Regional Association for Research on the Gulf of Maine (RARGOM) Report, New Hampshire, 1997:313. [95] JORDE K, SCHNEIDER M, PETER A, et al. Fuzzy based models for the evaluation of fish habitat quality and instream flow assessment[C]//Porceedings of the 3rd International Symposium on Environmental Hydraulics, 2021,3:27-28. [96] HATTEN J R, TIFFAN K F, ANGLIN D R, et al. A spatial model to assess the effects of hydropower operations on columbia river fall chinook salmon spawning habitat[J]. North American Journal of Fisheries Management, 2009, 29(5):1379-1405. [97] 易雨君,程曦,周静.栖息地适宜度评价方法研究进展[J].生态环境学报,2013,22(5):887-893. [98] 肖永辉,王志刚,刘曙照.水体富营养化及蓝藻水华预警模型研究进展[J].环境科学与技术,2011,34(11):152-157. [99] PARK Y, CHO K H, PARK J, et al. Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea[J]. Science of the Total Environment, 2015, 502:31-41. [100] 宫秀军.贝叶斯学习理论及其应用研究[D].北京:中国科学院研究生院(计算技术研究所),2002. [101] 豆荆辉,夏瑞,张凯,等.非参数模型在河湖富营养化研究领域应用进展[J].环境科学研究,2021,34(8):1928-1940. [102] BORSUK M E, STOW C A, RECKHOW K H. A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis[J]. Ecological Modelling, 2004, 173(23):219-239. [103] WAITE I R, BROWN L R, KENNEN J G, et al. Comparison of watershed disturbance predictive models for stream benthic macroinvertebrates for three distinct ecoregions in western US[J]. Ecological Indicators,2010, 10(6):1125-1136. [104] MALONEY K O, SCHMID M, WELLER D E. Applying additive modelling and gradient boosting to assess the effects of watershed and reach characteristics on riverine assemblages[J]. Methods in Ecology and Evolution, 2012, 3(1):116-128. [105] PONT D, HUGHES R M, WHITTIER T R, et al. A predictive index of biotic integrity model for aquatic-vertebrate assemblages of western U. S. streams[J]. Transactions of the American Fisheries Society,2009, 138(2):292-305. [106] HUANG J, FRIMPONG E A. Using historical atlas data to develop high-resolution distribution models of freshwater fishes[J]. PLoS One, 2015, 10(6):e0129995. [107] BERGER E, HAASE P, KUERMMERLEN M, et al. Water quality variables and pollution sources shaping stream macroinvertebrate communities[J]. Science of the Total Environment, 2017, 587/588:1-10. [108] PILIōRE A, SCHIPPER A M, BREURE T M, et al. Unraveling the relationships between freshwater invertebrate assemblages and interacting environmental factors[J]. Freshwater Science,2014, 33(4):1148-1158. [109] PATRICK C J, YUAN L L. Modeled hydrologic metrics show links between hydrology and the functional composition of stream assemblages[J]. Ecological Applications, 2017, 27(5):1605-1617. [110] XIA R, WANG G S, ZHANG Y, et al. River algal blooms are well predicted by antecedent environmental conditions[J]. Water Research, 2020, 185:116-221. [111] 刘焱序,杨思琪,赵文武,等.变化背景下的当代中国自然地理学:2017全国自然地理学大会述评[J].地理科学进展,2018,37(1):163-171. [112] 夏军,张翔,韦芳良,等.流域水系统理论及其在我国的实践[J].南水北调与水利科技,2017,16(1):1-7,13. [113] 张倚铭,兰佳,李慧赟,等.新安江对千岛湖外源输入总量的贡献分析(2006-2016年)[J].湖泊科学, 2019, 31(6):1534-1546. [114] 李晶,周自翔.延河流域景观格局与生态水文过程分析[J].地理学报,2014,69(7):933-944. [115] 夏军,张翔,韦芳良,等.流域水系统理论及其在我国的实践[J].南水北调与水利科技,2017,16(1):1-13. [116] 赵文智,程国栋.生态水文研究前沿问题及生态水文观测试验[J].地球科学进展,2008,23(7):671-674. [117] 胡胜.基于SWAT模型的北洛河流域生态水文过程模拟与预测研究[D].西安:西北大学,2015. [118] KIM J, LEE T, SEO D. Algal bloom prediction of the lower Han River,Korea using the EFDC hydrodynamic and water quality model[J]. Ecological Modelling, 2017,36:27-36. [119] KIESEL J, HERING D, SCHMALZ B, et al. A transdisciplinary approach for modelling macroinvertebrate habitats in lowland streams[C]//AHS-AISH Publication, 2009, 328:24-33. [120] KIESEL J, SCHMALZ B, BROWN G L, et al. Application of a hydrological-hydraulic modelling cascade in lowlands for investigating water and sediment fluxes in catchment,channel and reach[J]. Journal of Hydrology and Hydromechanics, 2013, 61(4):334-346. [121] GUSE B, KAIL J, RADINGER J, et al. Eco-hydrologic model cascades:simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates[J]. Science of the Total Environment, 2015, 533:542-556. [122] COUTURE R M, MOE S J, LIN Y, et al. Simulating water quality and ecological status of Lake Vansjø,Norway,under land-use and climate change by linking process-oriented models with a Bayesian network[J]. Science of the Total Environment, 2017, 621:713-724. [123] HOLGUIN-GONZALEZ J E, GERT E, PIETER B, et al. Development and application of an integrated ecological modelling framework to analyze the impact of wastewater discharges on the ecological water quality of rivers[J]. Environmental Modelling&Software, 2013, 48(10):27-36. [124] KUEMMERLEN M, SCHMALZ B, GUSE B, et al. Integrating catchment properties in small scale species distribution models of stream macroinvertebrates[J]. Ecological Modelling, 2014, 277(1):77-86. [125] XIA R, ZHANG Y, CRITTO A, et al. The potential impacts of climate change factors on freshwater eutrophication:implications for research and countermeasures of water management in China[J]. Sustainability, 2016, 8(3):229.
点击查看大图
计量
- 文章访问数: 249
- HTML全文浏览量: 21
- PDF下载量: 12
- 被引次数: 0