RESEARCH PROGRESS OF NON-POINT SOURCE POLLUTION SIMULATION BASED ON SPARROW MODEL
-
摘要: 随着点源污染的有效控制,面源污染逐渐成为我国水环境治理亟须解决的问题。但是,由于面源污染物的来源及其传输过程难于监测,因此需要使用模型模拟的方法进行评估分析。对面源污染模拟常用的统计模型方法和机理模型方法的分析比较发现,空间属性回归模型(SPAtially referenced regressions on watershed attributes,SPARROW)在利用统计学方法的同时,考虑了简单的水文传输过程,是一种介于简单统计模型与复杂机理模型之间的实用模型模拟方法。通过对该模型在污染溯源模拟与分析、流域变化预测分析和管理措施评估等方面的综述,得出结论如下:1) SPARROW模型模拟所需的数据相对较少,难度适中,十分符合我国流域人为干扰严重且监测数据相对不足的管理特点;2) SPARROW模型以空间模拟为主,可以基于目标水体的污染物负荷对上游流域的污染贡献进行溯源分析,并为面源污染的模拟研究提供技术支持。3) SPARROW模型可以在不确定性分析、时间分辨率和空间差异性等方面进行优化改进,进而实现更为广泛的应用。Abstract: With the effective control of point source pollution,non-point source pollution has gradually become the main focus of water environment management in China.However,the source and transport of non-point source pollution are hard to monitor,and models are usually necessary.Based on the comparison of the statistical model and the mechanism model for non-point source pollution simulation,SPARROW (SPAtially referenced regressions on watershed attributes) was proved to be a more practical model between the statistical model and the mechanism model,which is a hybrid (statistical and mechanistic) watershed model,and widely used in many countries and regions.By summarizing the different aspects of the model,such as nutrient transport,scenario analysis,combining with other methods,and the improvement of the model,the following conclusions can be drawn:1) SPARROW model can meet the demand of watershed management in China since it doesn't need huge data and its establishment is not very difficult;2) SPARROW model is spatially explicit,and it could estimate the delivery of pollutants from subbasins towards the outlet,therefore,it can provide sufficient support for the simulation of non-point source pollution;3) SPARROW model can be more widely used by improving uncertainty analysis,temporal resolution,and spatial difference.
-
Key words:
- non-point pollution /
- model simulation /
- watershed model /
- SPARROW model
-
[1] 代义彬,郎赟超,王铁军,等. SPARROW模型及其应用研究进展[J].地球与环境, 2019, 47(3):397-404. [2] 于维坤,尹炜,叶闽,等.面源污染模型研究进展[J].人民长江, 2008, 39(23):83-87. [3] 王凯,陈磊,杨念,等.从田块到水体:基于源-流-汇理念的非点源污染全过程核算方法[J].环境科学学报, 2022, 4(1):1-11. [4] RISSMAN A R, CARPENTER S R. Progress on nonpoint pollution:barriers&opportunities[J]. Daedalus, 2015, 144(3):35-47. [5] 夏军,翟晓燕,张永勇.水环境非点源污染模型研究进展[J].地理科学进展, 2012, 31(7):941-952. [6] YUAN L F, SINSHAW T, FORSHAY K J. Review of watershed-scale water quality and nonpoint source pollution models[J]. Geosciences, 2020, 10(1):25. [7] 耿润哲,梁璇静,殷培红,等.面源污染最佳管理措施多目标协同优化配置研究进展[J].生态学报, 2019, 39(8):2667-2675. [8] VEGA M, PARDO R, BARRADO E, et al. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis[J]. Water Research, 1998, 32(12):3581-3592. [9] BENGRAINE K, MARHABA T F. Using principal component analysis to monitor spatial and temporal changes in water quality[J]. Journal of Hazardous Materials, 2003, 100(1/2/3):179-195. [10] SINGH K P, MALIK A, SINHA S. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques:a case study[J]. Analytica Chimica Acta, 2005, 538(1/2):355-374. [11] GURJAR S K, TARE V. Spatial-temporal assessment of water quality and assimilative capacity of river Ramganga, a tributary of Ganga using multivariate analysis and QUEL2K[J]. Journal of Cleaner Production, 2019, 222:550-564. [12] 李艳红,葛刚,胡春华,等.基于聚类分析和因子分析的鄱阳湖流域水质时空变化特征及污染源分析[J].南昌大学学报(理科版), 2016, 40(4):360-365. [13] 项颂,庞燕,窦嘉顺,等.不同时空尺度下土地利用对洱海入湖河流水质的影响[J].生态学报, 2018, 38(3):876-885. [14] 张家欣.太湖流域水质空间分布状况与污染源识别[J].江苏科技信息, 2021, 38(10):48-54. [15] 后希康,张凯,段平洲,等.基于APCS-MLR模型的沱河流域污染来源解析[J].环境科学研究, 2021, 34(10):2350-2357. [16] KHADAM I M, KALUARACHCHI J J. Water quality modeling under hydrologic variability and parameter uncertainty using erosion-scaled export coefficients[J]. Journal of Hydrology, 2006, 330(1/2):354-367. [17] ROBINSON T H, MELACK J M. Modeling nutrient export from coastal california watersheds[J]. Journal of the American Water Resources Association, 2013, 49(4):793-809. [18] WORRALL F, DAVIES H, BURT T, et al. The flux of dissolved nitrogen from the UK:evaluating the role of soils and land use[J]. Science of the Total Environment, 2012, 434:90-100. [19] HANRAHAN G, GLEDHILL M, HOUSE W A, et al. Phosphorus loading in the Frome catchment, UK:seasonal refinement of the coefficient modeling approach[J]. Journal of Environmental Quality, 2001, 30(5):1738-1746. [20] MATIAS N G, JOHNES P J. Catchment phosphorous losses:an export coefficient modelling approach with scenario analysis for water management[J]. Water Resources Management, 2012, 26(5):1041-1064. [21] 宋大平,左强,刘本生,等.农业面源污染中氮排放时空变化及其健康风险评价研究:以淮河流域为例[J].农业环境科学学报, 2018, 37(6):1219-1231. [22] 韦晓雪,李晓琳,郑毅.基于输出系数模型的1998-2016年洱海流域磷素时空变化特征分析[J].农业环境科学学报, 2020, 39(1):171-181. [23] ARNOLD J G, ALLEN P M. Estimating hydrologic budgets for three Illinois watersheds[J]. Journal of Hydrology, 1996, 176(1):57-77. [24] 张京,郑华,何梦男,等.流域水环境污染模拟及关键源区鉴别:以义乌江流域为例[J].环境工程学报, 2021, 15(4):1167-1177. [25] da SILVA BURIGATO COSTA C M, MARQUES L D S, ALMEIDA A K, et al. Applicability of water quality models around the world:a review[J]. Environmental Science and Pollution Research, 2019, 26(36):36141-36162. [26] SCHWARZ G, HOOS A B, ALEXANDER R B, et al. Section 3. The SPARROW surface water-quality model:theory, application and user documentation[R]. Reston, VA:U. S. Geological Survey, 2006. [27] SMITH R A, SCHWARZ G E, ALEXANDER R B. Regional interpretation of water-quality monitoring data[J]. Water Resources Research, 1997, 33(12):2781-2798. [28] ALEXANDER R B, SMITH R A, SCHWARZ G E. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico[J]. Nature, 2000, 403(6771):758-761. [29] HOOS A B, MCMAHON G. Spatial analysis of instream nitrogen loads and factors controlling nitrogen delivery to streams in the southeastern United States using spatially referenced regression on watershed attributes (SPARROW) and regional classification frameworks[J]. Hydrological Processes, 2009, 23(16):2275-2294. [30] ROBERTSON D M, SAAD D A. Nutrient inputs to the laurentian great lakes by source and watershed estimated using SPARROW watershed models1[J]. JAWRA Journal of the American Water Resources Association, 2011, 47(5):1011-1033. [31] REBICH R A, HOUSTON N A, MIZE S V, et al. Sources and delivery of nutrients to the northwestern gulf of mexico from streams in the south-central united states1[J]. Journal of the American Water Resources Association, 2011, 47(5):1061-1086. [32] BROWN J B, SPRAGUE L A, DUPREE J A. Nutrient sources and transport in the Missouri River basin, with emphasis on the effects of irrigation and reservoirs1[J]. Journal of the American Water Resources Association, 2011, 47(5):1034-1060. [33] ELLIOTT A H, ALEXANDER R B, SCHWARZ G E, et al. Estimation of nutrient sources and transport for New Zealand using the hybrid mechanistic-statistical model SPARROW[J]. Journal of Hydrology-New Zealand, 2005, 44(1):1-27. [34] DUAN W L, HE B, TAKARA K, et al. Modeling suspended sediment sources and transport in the Ishikari River basin, Japan, using SPARROW[J]. Hydrology and Earth System Sciences, 2015, 19(3):1293-1306. [35] BENOY G A, JENKINSON R W, ROBERTSON D M, et al. Nutrient delivery to Lake Winnipeg from the RedAssiniboine River Basin:a binational application of the SPARROW model[J]. Canadian Water Resources Journal, 2016, 41(3):429-447. [36] LI X, WELLEN C, LIU G X, et al. Estimation of nutrient sources and transport using spatially referenced regressions on watershed attributes:a case study in Songhuajiang River Basin, China[J]. Environmental Science and Pollution Research, 2015, 22(9):6989-7001. [37] 卢诚,李国光,齐作达,等. SPARROW模型的传输过程研究:以新安江流域总氮为例[J].水资源与水工程学报, 2017, 28(1):7-13. [38] 杨中文,张萌,郝彩莲,等.基于源汇过程模拟的鄱阳湖流域总磷污染源解析[J].环境科学研究, 2020, 33(11):2493-2506. [39] DAI Y B, LANG Y C, WANG T J, et al. Modelling the sources and transport of ammonium nitrogen with the SPARROW model:a case study in a karst basin[J]. Journal of Hydrology, 2021, 592:125763. [40] NAUMAN T W, ELY C P, MILLER M P, et al. Salinity yield modeling of the upper colorado river basin using 30-m resolution soil maps and random forests[J]. Water Resources Research, 2019, 55(6):4954-4973. [41] WELLEN C C, SHATILLA N J, CAREY S K. Regional scale selenium loading associated with surface coal mining, Elk Valley, British Columbia, Canada[J]. Science of the Total Environment, 2015, 532:791-802. [42] BRAKEBILL J W, ATOR S W, SCHWARZ G E. Sources of suspended-sediment flux in streams of the chesapeake bay watershed:a regional application of the SPARROW model1[J]. Journal of the American Water Resources Association, 2010, 46(4):757-776. [43] HERRMANN M, NAJJAR R G, KEMP W M, et al. Net ecosystem production and organic carbon balance of U.S. East Coast estuaries:a synthesis approach[J]. Global Biogeochemical Cycles, 2015, 29(1):96-111. [44] ROBERTSON D M, SAAD D A, CHRISTIANSEN D E, et al. Simulated impacts of climate change on phosphorus loading to Lake Michigan[J]. Journal of Great Lakes Research, 2016, 42(3):536-548. [45] ZHANG W S, PUEPPKE S G, LI H P, et al. Modeling phosphorus sources and transport in a headwater catchment with rapid agricultural expansion[J]. Environmental Pollution, 2019, 255:113273. [46] ALAM M J, GOODALL J L, BOWES B D, et al. The impact of projected climate change scenarios on nitrogen yield at a regional scale for the contiguous united states[J]. Journal of the American Water Resources Association, 2017, 53(4):854-870. [47] MORALES-MARÍN L A, WHEATER H S, LINDENSCHMIDT K E. Assessment of nutrient loadings of a large multipurpose prairie reservoir[J]. Journal of Hydrology, 2017, 550:166-185. [48] MORALES-MARIN L, WHEATER H, LINDENSCHMIDT K E. Potential changes of annual-averaged nutrient export in the south saskatchewan river basin under climate and land-use change scenarios[J]. Water, 2018, 10(10):1438. [49] MILLER M P, CAPEL P D, GARCIA A M, et al. Response of nitrogen loading to the chesapeake bay to source reduction and land use change scenarios:a SPARROW-informed analysis[J]. Journal of the American Water Resources Association, 2020, 56(1):100-112. [50] MILLER M P, de SOUZA M L, ALEXANDER R B, et al. Application of the RSPARROW modeling tool to estimate total nitrogen sources to streams and evaluate source reduction management scenarios in the Grande River Basin, Brazil[J]. Water, 2020, 12(10):2911. [51] LI G G, WANG Q X, LIU G H, et al. A successful approach of the first ecological compensation demonstration for crossing provinces of downstream and upstream in China[J]. Sustainability, 2020, 12(15):1-18. [52] 刘庄,晁建颖,张丽,等.中国非点源污染负荷计算研究现状与存在问题[J].水科学进展, 2015, 26(3):432-442. [53] 杨雯,敖天其,王文章,等.基于输出系数模型的琼江流域(安居段)农村非点源污染负荷评估[J].环境工程, 2018, 36(10):140-144. [54] ONGLEY E D, ZHANG X L, YU T. Current status of agricultural and rural non-point source pollution assessment in China[J]. Environmental Pollution, 2010, 158(5):1159-1168. [55] 王秀娟,刘瑞民,宫永伟,等.香溪河流域土地利用格局演变对非点源污染的影响研究[J].环境工程学报, 2011, 5(5):1194-1200. [56] QI J Y, ZHANG X S, YANG Q C, et al. SWAT ungauged:water quality modeling in the upper mississippi river basin[J]. Journal of Hydrology, 2020, 584:124601. [57] PRESTON S D, ALEXANDER R B, SCHWARZ G E, et al. Factors affecting stream nutrient loads:a synthesis of regional SPARROW model results for the Continental United States1[J]. Journal of the American Water Resources Association, 2011, 47(5):891-915. [58] 薛利红,杨林章.面源污染物输出系数模型的研究进展[J].生态学杂志, 2009, 28(4):755-761. [59] GASSMAN P W, REYES M R, GREEN C H, et al. The soil and water assessment tool:historical development, applications, and future research directions[J]. Transactions of the Asabe, 2007, 50(4):1211-1250. [60] KIM D K, KALUSKAR S, MUGALINGAM S, et al. A Bayesian approach for estimating phosphorus export and delivery rates with the spatially referenced regression on watershed attributes (SPARROW) model[J]. Ecological Informatics, 2017, 37:77-91. [61] CHANAT J G, YANG G X. Exploring drivers of regional water-quality change using differential spatially referenced regression:a pilot study in the Chesapeake Bay Watershed[J]. Water Resources Research, 2018, 54(10):8120-8145. [62] ALEXANDER R B, SCHWARZ G E, BOYER E W. Advances in quantifying streamflow variability across continental scales:1. identifying natural and anthropogenic controlling factors in the USA using a spatially explicit modeling method[J]. Water Resources Research, 2019, 55(12):10893-10917. [63] ALEXANDER R B, SCHWARZ G E, BOYER E W. Advances in quantifying streamflow variability across continental scales:2. improved model regionalization and prediction uncertainties using hierarchical bayesian methods[J]. Water Resources Research, 2019, 55(12):11061-11087.
点击查看大图
计量
- 文章访问数: 272
- HTML全文浏览量: 25
- PDF下载量: 11
- 被引次数: 0