中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SPARROW模型的面源污染模拟研究进展

尹京晨 丁晗 李泽利 李雪 李国光 王玉秋

何蔚, 陈永华, 梁希, 汤春芳, 吴晓芙. 改良锰矿渣中木本植物筛选及锰的亚细胞分布和化学形态[J]. 环境工程, 2018, 36(9): 154-160. doi: 10.13205/j.hjgc.201809031
引用本文: 尹京晨, 丁晗, 李泽利, 李雪, 李国光, 王玉秋. 基于SPARROW模型的面源污染模拟研究进展[J]. 环境工程, 2022, 40(6): 253-260,294. doi: 10.13205/j.hjgc.202206032
YIN Jingchen, DING Han, LI Zeli, LI Xue, LI Guoguang, WANG Yuqiu. RESEARCH PROGRESS OF NON-POINT SOURCE POLLUTION SIMULATION BASED ON SPARROW MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 253-260,294. doi: 10.13205/j.hjgc.202206032
Citation: YIN Jingchen, DING Han, LI Zeli, LI Xue, LI Guoguang, WANG Yuqiu. RESEARCH PROGRESS OF NON-POINT SOURCE POLLUTION SIMULATION BASED ON SPARROW MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 253-260,294. doi: 10.13205/j.hjgc.202206032

基于SPARROW模型的面源污染模拟研究进展

doi: 10.13205/j.hjgc.202206032
详细信息
    作者简介:

    尹京晨(1991-),男,博士,主要从事流域水环境管理模型研究。yinjingchen@mail.nankai.edu.cn

    通讯作者:

    王玉秋(1965-),男,教授,主要从事流域水环境管理模型研究。yqwang@nankai.edu.cn

RESEARCH PROGRESS OF NON-POINT SOURCE POLLUTION SIMULATION BASED ON SPARROW MODEL

  • 摘要: 随着点源污染的有效控制,面源污染逐渐成为我国水环境治理亟须解决的问题。但是,由于面源污染物的来源及其传输过程难于监测,因此需要使用模型模拟的方法进行评估分析。对面源污染模拟常用的统计模型方法和机理模型方法的分析比较发现,空间属性回归模型(SPAtially referenced regressions on watershed attributes,SPARROW)在利用统计学方法的同时,考虑了简单的水文传输过程,是一种介于简单统计模型与复杂机理模型之间的实用模型模拟方法。通过对该模型在污染溯源模拟与分析、流域变化预测分析和管理措施评估等方面的综述,得出结论如下:1) SPARROW模型模拟所需的数据相对较少,难度适中,十分符合我国流域人为干扰严重且监测数据相对不足的管理特点;2) SPARROW模型以空间模拟为主,可以基于目标水体的污染物负荷对上游流域的污染贡献进行溯源分析,并为面源污染的模拟研究提供技术支持。3) SPARROW模型可以在不确定性分析、时间分辨率和空间差异性等方面进行优化改进,进而实现更为广泛的应用。
  • [1] 代义彬,郎赟超,王铁军,等. SPARROW模型及其应用研究进展[J].地球与环境, 2019, 47(3):397-404.
    [2] 于维坤,尹炜,叶闽,等.面源污染模型研究进展[J].人民长江, 2008, 39(23):83-87.
    [3] 王凯,陈磊,杨念,等.从田块到水体:基于源-流-汇理念的非点源污染全过程核算方法[J].环境科学学报, 2022, 4(1):1-11.
    [4] RISSMAN A R, CARPENTER S R. Progress on nonpoint pollution:barriers&opportunities[J]. Daedalus, 2015, 144(3):35-47.
    [5] 夏军,翟晓燕,张永勇.水环境非点源污染模型研究进展[J].地理科学进展, 2012, 31(7):941-952.
    [6] YUAN L F, SINSHAW T, FORSHAY K J. Review of watershed-scale water quality and nonpoint source pollution models[J]. Geosciences, 2020, 10(1):25.
    [7] 耿润哲,梁璇静,殷培红,等.面源污染最佳管理措施多目标协同优化配置研究进展[J].生态学报, 2019, 39(8):2667-2675.
    [8] VEGA M, PARDO R, BARRADO E, et al. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis[J]. Water Research, 1998, 32(12):3581-3592.
    [9] BENGRAINE K, MARHABA T F. Using principal component analysis to monitor spatial and temporal changes in water quality[J]. Journal of Hazardous Materials, 2003, 100(1/2/3):179-195.
    [10] SINGH K P, MALIK A, SINHA S. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques:a case study[J]. Analytica Chimica Acta, 2005, 538(1/2):355-374.
    [11] GURJAR S K, TARE V. Spatial-temporal assessment of water quality and assimilative capacity of river Ramganga, a tributary of Ganga using multivariate analysis and QUEL2K[J]. Journal of Cleaner Production, 2019, 222:550-564.
    [12] 李艳红,葛刚,胡春华,等.基于聚类分析和因子分析的鄱阳湖流域水质时空变化特征及污染源分析[J].南昌大学学报(理科版), 2016, 40(4):360-365.
    [13] 项颂,庞燕,窦嘉顺,等.不同时空尺度下土地利用对洱海入湖河流水质的影响[J].生态学报, 2018, 38(3):876-885.
    [14] 张家欣.太湖流域水质空间分布状况与污染源识别[J].江苏科技信息, 2021, 38(10):48-54.
    [15] 后希康,张凯,段平洲,等.基于APCS-MLR模型的沱河流域污染来源解析[J].环境科学研究, 2021, 34(10):2350-2357.
    [16] KHADAM I M, KALUARACHCHI J J. Water quality modeling under hydrologic variability and parameter uncertainty using erosion-scaled export coefficients[J]. Journal of Hydrology, 2006, 330(1/2):354-367.
    [17] ROBINSON T H, MELACK J M. Modeling nutrient export from coastal california watersheds[J]. Journal of the American Water Resources Association, 2013, 49(4):793-809.
    [18] WORRALL F, DAVIES H, BURT T, et al. The flux of dissolved nitrogen from the UK:evaluating the role of soils and land use[J]. Science of the Total Environment, 2012, 434:90-100.
    [19] HANRAHAN G, GLEDHILL M, HOUSE W A, et al. Phosphorus loading in the Frome catchment, UK:seasonal refinement of the coefficient modeling approach[J]. Journal of Environmental Quality, 2001, 30(5):1738-1746.
    [20] MATIAS N G, JOHNES P J. Catchment phosphorous losses:an export coefficient modelling approach with scenario analysis for water management[J]. Water Resources Management, 2012, 26(5):1041-1064.
    [21] 宋大平,左强,刘本生,等.农业面源污染中氮排放时空变化及其健康风险评价研究:以淮河流域为例[J].农业环境科学学报, 2018, 37(6):1219-1231.
    [22] 韦晓雪,李晓琳,郑毅.基于输出系数模型的1998-2016年洱海流域磷素时空变化特征分析[J].农业环境科学学报, 2020, 39(1):171-181.
    [23] ARNOLD J G, ALLEN P M. Estimating hydrologic budgets for three Illinois watersheds[J]. Journal of Hydrology, 1996, 176(1):57-77.
    [24] 张京,郑华,何梦男,等.流域水环境污染模拟及关键源区鉴别:以义乌江流域为例[J].环境工程学报, 2021, 15(4):1167-1177.
    [25] da SILVA BURIGATO COSTA C M, MARQUES L D S, ALMEIDA A K, et al. Applicability of water quality models around the world:a review[J]. Environmental Science and Pollution Research, 2019, 26(36):36141-36162.
    [26] SCHWARZ G, HOOS A B, ALEXANDER R B, et al. Section 3. The SPARROW surface water-quality model:theory, application and user documentation[R]. Reston, VA:U. S. Geological Survey, 2006.
    [27] SMITH R A, SCHWARZ G E, ALEXANDER R B. Regional interpretation of water-quality monitoring data[J]. Water Resources Research, 1997, 33(12):2781-2798.
    [28] ALEXANDER R B, SMITH R A, SCHWARZ G E. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico[J]. Nature, 2000, 403(6771):758-761.
    [29] HOOS A B, MCMAHON G. Spatial analysis of instream nitrogen loads and factors controlling nitrogen delivery to streams in the southeastern United States using spatially referenced regression on watershed attributes (SPARROW) and regional classification frameworks[J]. Hydrological Processes, 2009, 23(16):2275-2294.
    [30] ROBERTSON D M, SAAD D A. Nutrient inputs to the laurentian great lakes by source and watershed estimated using SPARROW watershed models1[J]. JAWRA Journal of the American Water Resources Association, 2011, 47(5):1011-1033.
    [31] REBICH R A, HOUSTON N A, MIZE S V, et al. Sources and delivery of nutrients to the northwestern gulf of mexico from streams in the south-central united states1[J]. Journal of the American Water Resources Association, 2011, 47(5):1061-1086.
    [32] BROWN J B, SPRAGUE L A, DUPREE J A. Nutrient sources and transport in the Missouri River basin, with emphasis on the effects of irrigation and reservoirs1[J]. Journal of the American Water Resources Association, 2011, 47(5):1034-1060.
    [33] ELLIOTT A H, ALEXANDER R B, SCHWARZ G E, et al. Estimation of nutrient sources and transport for New Zealand using the hybrid mechanistic-statistical model SPARROW[J]. Journal of Hydrology-New Zealand, 2005, 44(1):1-27.
    [34] DUAN W L, HE B, TAKARA K, et al. Modeling suspended sediment sources and transport in the Ishikari River basin, Japan, using SPARROW[J]. Hydrology and Earth System Sciences, 2015, 19(3):1293-1306.
    [35] BENOY G A, JENKINSON R W, ROBERTSON D M, et al. Nutrient delivery to Lake Winnipeg from the RedAssiniboine River Basin:a binational application of the SPARROW model[J]. Canadian Water Resources Journal, 2016, 41(3):429-447.
    [36] LI X, WELLEN C, LIU G X, et al. Estimation of nutrient sources and transport using spatially referenced regressions on watershed attributes:a case study in Songhuajiang River Basin, China[J]. Environmental Science and Pollution Research, 2015, 22(9):6989-7001.
    [37] 卢诚,李国光,齐作达,等. SPARROW模型的传输过程研究:以新安江流域总氮为例[J].水资源与水工程学报, 2017, 28(1):7-13.
    [38] 杨中文,张萌,郝彩莲,等.基于源汇过程模拟的鄱阳湖流域总磷污染源解析[J].环境科学研究, 2020, 33(11):2493-2506.
    [39] DAI Y B, LANG Y C, WANG T J, et al. Modelling the sources and transport of ammonium nitrogen with the SPARROW model:a case study in a karst basin[J]. Journal of Hydrology, 2021, 592:125763.
    [40] NAUMAN T W, ELY C P, MILLER M P, et al. Salinity yield modeling of the upper colorado river basin using 30-m resolution soil maps and random forests[J]. Water Resources Research, 2019, 55(6):4954-4973.
    [41] WELLEN C C, SHATILLA N J, CAREY S K. Regional scale selenium loading associated with surface coal mining, Elk Valley, British Columbia, Canada[J]. Science of the Total Environment, 2015, 532:791-802.
    [42] BRAKEBILL J W, ATOR S W, SCHWARZ G E. Sources of suspended-sediment flux in streams of the chesapeake bay watershed:a regional application of the SPARROW model1[J]. Journal of the American Water Resources Association, 2010, 46(4):757-776.
    [43] HERRMANN M, NAJJAR R G, KEMP W M, et al. Net ecosystem production and organic carbon balance of U.S. East Coast estuaries:a synthesis approach[J]. Global Biogeochemical Cycles, 2015, 29(1):96-111.
    [44] ROBERTSON D M, SAAD D A, CHRISTIANSEN D E, et al. Simulated impacts of climate change on phosphorus loading to Lake Michigan[J]. Journal of Great Lakes Research, 2016, 42(3):536-548.
    [45] ZHANG W S, PUEPPKE S G, LI H P, et al. Modeling phosphorus sources and transport in a headwater catchment with rapid agricultural expansion[J]. Environmental Pollution, 2019, 255:113273.
    [46] ALAM M J, GOODALL J L, BOWES B D, et al. The impact of projected climate change scenarios on nitrogen yield at a regional scale for the contiguous united states[J]. Journal of the American Water Resources Association, 2017, 53(4):854-870.
    [47] MORALES-MARÍN L A, WHEATER H S, LINDENSCHMIDT K E. Assessment of nutrient loadings of a large multipurpose prairie reservoir[J]. Journal of Hydrology, 2017, 550:166-185.
    [48] MORALES-MARIN L, WHEATER H, LINDENSCHMIDT K E. Potential changes of annual-averaged nutrient export in the south saskatchewan river basin under climate and land-use change scenarios[J]. Water, 2018, 10(10):1438.
    [49] MILLER M P, CAPEL P D, GARCIA A M, et al. Response of nitrogen loading to the chesapeake bay to source reduction and land use change scenarios:a SPARROW-informed analysis[J]. Journal of the American Water Resources Association, 2020, 56(1):100-112.
    [50] MILLER M P, de SOUZA M L, ALEXANDER R B, et al. Application of the RSPARROW modeling tool to estimate total nitrogen sources to streams and evaluate source reduction management scenarios in the Grande River Basin, Brazil[J]. Water, 2020, 12(10):2911.
    [51] LI G G, WANG Q X, LIU G H, et al. A successful approach of the first ecological compensation demonstration for crossing provinces of downstream and upstream in China[J]. Sustainability, 2020, 12(15):1-18.
    [52] 刘庄,晁建颖,张丽,等.中国非点源污染负荷计算研究现状与存在问题[J].水科学进展, 2015, 26(3):432-442.
    [53] 杨雯,敖天其,王文章,等.基于输出系数模型的琼江流域(安居段)农村非点源污染负荷评估[J].环境工程, 2018, 36(10):140-144.
    [54] ONGLEY E D, ZHANG X L, YU T. Current status of agricultural and rural non-point source pollution assessment in China[J]. Environmental Pollution, 2010, 158(5):1159-1168.
    [55] 王秀娟,刘瑞民,宫永伟,等.香溪河流域土地利用格局演变对非点源污染的影响研究[J].环境工程学报, 2011, 5(5):1194-1200.
    [56] QI J Y, ZHANG X S, YANG Q C, et al. SWAT ungauged:water quality modeling in the upper mississippi river basin[J]. Journal of Hydrology, 2020, 584:124601.
    [57] PRESTON S D, ALEXANDER R B, SCHWARZ G E, et al. Factors affecting stream nutrient loads:a synthesis of regional SPARROW model results for the Continental United States1[J]. Journal of the American Water Resources Association, 2011, 47(5):891-915.
    [58] 薛利红,杨林章.面源污染物输出系数模型的研究进展[J].生态学杂志, 2009, 28(4):755-761.
    [59] GASSMAN P W, REYES M R, GREEN C H, et al. The soil and water assessment tool:historical development, applications, and future research directions[J]. Transactions of the Asabe, 2007, 50(4):1211-1250.
    [60] KIM D K, KALUSKAR S, MUGALINGAM S, et al. A Bayesian approach for estimating phosphorus export and delivery rates with the spatially referenced regression on watershed attributes (SPARROW) model[J]. Ecological Informatics, 2017, 37:77-91.
    [61] CHANAT J G, YANG G X. Exploring drivers of regional water-quality change using differential spatially referenced regression:a pilot study in the Chesapeake Bay Watershed[J]. Water Resources Research, 2018, 54(10):8120-8145.
    [62] ALEXANDER R B, SCHWARZ G E, BOYER E W. Advances in quantifying streamflow variability across continental scales:1. identifying natural and anthropogenic controlling factors in the USA using a spatially explicit modeling method[J]. Water Resources Research, 2019, 55(12):10893-10917.
    [63] ALEXANDER R B, SCHWARZ G E, BOYER E W. Advances in quantifying streamflow variability across continental scales:2. improved model regionalization and prediction uncertainties using hierarchical bayesian methods[J]. Water Resources Research, 2019, 55(12):11061-11087.
  • 期刊类型引用(30)

    1. 王欣,朱峰,方圆,明卉. 国内灰绿基础设施协同策略研究进展及展望. 城市道桥与防洪. 2024(01): 1-8+300 . 百度学术
    2. 乐文彩,张玉,刘青,鲁潇,刘月强. 长江流域稻田湿地设计及运行效果. 中国给水排水. 2024(05): 111-115 . 百度学术
    3. 尚文. 高负荷潜流人工湿地处理工业污水厂高盐尾水的中试试验. 净水技术. 2023(S1): 116-122 . 百度学术
    4. 陈尧,胡润夏,倪金雷,汤文艳. 厌氧-人工湿地组合工艺在农村生活污水应用研究. 中国新技术新产品. 2023(08): 130-133 . 百度学术
    5. 刘月雷,张俊杰,郑小林,邓伟,尹勤华,董亚,刘文博. 城市初期雨水控制技术研究进展. 环境污染与防治. 2023(07): 1007-1012+1017 . 百度学术
    6. 黄荣敏,黄钰铃,王万奇,张烨,雷蕊菡. 基于动力学的尾水湿地污染物去除效果研究. 环境工程. 2023(S2): 213-217 . 本站查看
    7. 尚文. 潜流湿地与表面流湿地处理工业尾水的工程实践与对比研究. 给水排水. 2023(S1): 238-244 . 百度学术
    8. 刘敏. 潜流湿地及曝气砾石床对污水厂尾水净化工艺包研究. 东北师大学报(自然科学版). 2023(04): 142-151 . 百度学术
    9. 左尚武,王月圆,余少乐,李子辰,吴娟,成水平. 基于水位调控的垂直流人工湿地强化脱氮研究. 水生生物学报. 2022(10): 1494-1500 . 百度学术
    10. 甘雁飞,周正兵,徐波. A/O-改良人工湿地组合工艺处理农村生活污水研究. 工业水处理. 2022(11): 200-205 . 百度学术
    11. 徐磊,戴惠东,彭剑峰,原璐彬,张坚,周姣艳. 不同类型人工湿地对污染物的去除效果. 江苏水利. 2022(12): 53-57 . 百度学术
    12. 宋凯宇,吕丰锦,张璇,魏俊,赵炜,周强,陈浩. 河道旁路人工湿地设计要点分析——以华北地区某河道旁路人工湿地为例. 环境工程技术学报. 2021(01): 74-81 . 百度学术
    13. 毛明元,赵霞,吴乐瑶,陈同,宋世宇. 多工艺组合人工湿地在西北农村地区的发展现状及展望. 四川环境. 2021(01): 254-258 . 百度学术
    14. 潘艺蓉,罗雨莉,刘俊新,王旭. 义乌市城镇污水提标处理的环境与经济效益分析. 环境工程学报. 2021(04): 1188-1198 . 百度学术
    15. 吴琼,翟莹,陈旭,盛蔚婧. 国内人工湿地规范表流湿地设计比较分析. 资源节约与环保. 2021(09): 11-12 . 百度学术
    16. 卢少勇,万正芬,康兴生,张建,靖玉明,姜霞,张金勇,梁爽,张云潇,李洁琳,国晓春,马田力,王坤,吴永红,孙丰凯,薛墨溪,孔维静,卢洪斌,夏会娟,彭剑锋,张森霖,郑浩巍. 《人工湿地水质净化技术指南》编制思路与体系. 环境工程技术学报. 2021(05): 829-836 . 百度学术
    17. 周铖. 云南高原水库面源污染防治中人工湿地工程技术应用探讨. 绿色科技. 2021(20): 84-87 . 百度学术
    18. 李莉,段志强,白娟,张卫,张方方. 高河水库上游人工湿地净化工程设计. 现代农业科技. 2020(05): 162-163 . 百度学术
    19. 谢勇丽,曾霞,张红梅. 四种人工湿地基质对磷的吸附特性研究. 环境科学与管理. 2020(03): 99-103 . 百度学术
    20. 王若凡,汪文飞,王煜钧,盛杨,杨思雨,李海超. 不同填料对潜流湿地PO_4~(3-)-P去除效果的影响. 环境工程. 2020(03): 87-91 . 本站查看
    21. 林卉,姜忠群,冒建华. 人工湿地在农村生活污水处理中的应用及研究进展. 中国农业科技导报. 2020(05): 129-136 . 百度学术
    22. 汪文飞,王若凡,王煜钧,姚雪峰,王蕊蕊. 潜流湿地填料比选及对氨氮的去除效应研究. 环境污染与防治. 2020(07): 864-868+873 . 百度学术
    23. 李荣福,吴荡,徐悦,王忠凯,李章林,申宝明. “生态活水”治水比较优势分析与应用. 环境生态学. 2020(10): 69-75 . 百度学术
    24. 张翔,李子富,周晓琴,郑蕾. 我国人工湿地标准中潜流湿地设计分析. 中国给水排水. 2020(18): 24-31 . 百度学术
    25. 魏俊,赵梦飞,刘伟荣,孔令为,周笑天,郑亨. 我国尾水型人工湿地发展现状. 中国给水排水. 2019(02): 29-33 . 百度学术
    26. 常雅婷,卫婷,嵇斌,乔尚校,康佩颖,赵亚乾. 国内各地区人工湿地相关规范/规程对比分析. 中国给水排水. 2019(08): 27-33 . 百度学术
    27. 曾磊,雷培树,蔡世颜,孙健,崔朋,鲍任兵,汪路. 人工湿地工程应用中面积计算与基质堵塞研究进展. 湿地科学与管理. 2019(04): 67-71 . 百度学术
    28. 程铭. 多级垂直流人工湿地对北方农村生活污水的处理分析. 环境保护科学. 2019(06): 64-70 . 百度学术
    29. 吴丹子,李鑫,张文杰,郑文刚. 管网雨水补给河道用水的人工湿地水质净化流程研究. 风景园林. 2019(12): 91-96 . 百度学术
    30. 陈思琳,周江,李星和,练川. 人工湿地农村生活污水处理技术在贵州省的发展现状研究. 科技风. 2018(27): 144 . 百度学术

    其他类型引用(43)

  • 加载中
计量
  • 文章访问数:  363
  • HTML全文浏览量:  38
  • PDF下载量:  11
  • 被引次数: 73
出版历程
  • 收稿日期:  2021-11-19
  • 网络出版日期:  2022-09-01
  • 刊出日期:  2022-09-01

目录

    /

    返回文章
    返回