THE FORMATION OF AEROBIC GRANULAR SLUDGE INDUCED BY Ca2+, Mg2+ AND Fe2+ AND ITS SEWAGE TREATMENT EFFECT
-
摘要: 研究了Ca2+、Mg2+、Fe2+诱导好氧颗粒污泥(AGS)的形成,探讨其对COD、NH4+-N、TP的去除效果,研究了有机污染负荷、温度、曝气量对污水处理效果的影响及AGS连续运行稳定性。结果表明:Ca2+、Mg2+、Fe2+可促进AGS形成,其中位径达到340 μm时分别需18,16,11 d。添加Ca2+、Mg2+和Fe2+的污泥SVI30稳定在较低水平,MLSS高于自然形成的AGS,特别是Fe2+的脱氢酶活性较高。Ca2+、Mg2+、Fe2+诱导形成的AGS对COD、NH4+-N、TP的处理效果较好,其中添加Fe2+的AGS的效果最好,在低、高有机负荷,超低温(4 ℃)和超高温(40 ℃)及曝气不足(1 L/min)情况下,均有较好的COD、NH4+-N、TP去除效果。Ca2+、Mg2+、Fe2+诱导形成的AGS稳定运行60 d后仍有较好的处理效果,其中Fe2+诱导的AGS的COD、NH4+-N、TP去除率高达96.3%、96.8%、88.7%。Abstract: This paper studied Ca2+, Mg2+ and Fe2+promoting the formation of aerobic granular sludge, discussed the removal effect of aerobic granular sludge induced by Ca2+, Mg2+and Fe2+on COD, NH4+-N and TP, studied the effects of environmental factors such as organic pollution load, temperature and aeration quantity on wastewater treatment, and then evaluated the operation stability of the granular sludge running for 60 days. The results showed that the addition of Ca2+, Mg2+ and Fe2+ could promote the granulation of AGS, and the intermediate diameter of the AGS reached 340 μm needed 18, 16, 11 days, respectively. The SVI30 min of sludge induced by Ca2+, Mg2+and Fe2+ decreased continuously and got stabilized at a lower level. The value of MLSS was higher than that of the control, especially Fe2+, and its dehydrogenase activity was higher. The granular sludge induced by Ca2+, Mg2+ and Fe2+ all had a good treatment effect on COD, NH4+-N and TP, significantly higher than the control group, especially the granular sludge induced by Fe2+. The granular sludge induced by Fe2+ showed a better removal effect on COD, NH4+-N and TP in wastewater under ultra-low temperature (4 ℃), ultra-high temperature (40 ℃) and insufficient aeration (1 L/min). The granular sludge induced by Ca2+, Mg2+ and Fe2+ had good stability in sewage treatment in 60 days’ running. The removal rate of COD, NH4+-N and TP in AGS induced by Fe2+ still came up with 96.3%, 96.8% and 88.7%.
-
Key words:
- aerobic granules /
- Ca2+ /
- Mg2+ /
- Fe2+ /
- particle forming time /
- sewage treatment effect /
- stability
-
[1] LIU W,ZHANG J S,JIN Y J,et al.Adsorption of Pb(Ⅱ),Cd(Ⅱ) and Zn(Ⅱ) by extracellular polymeric substances extracted from aerobic granular sludge:efficiency of protein[J].Journal of Environmental Chemical Engineering,2015,3(2):1223-1232. [2] 刘丽,任婷婷,徐得潜,等.高强度好氧颗粒污泥的培养及特性研究[J].中国环境科学,2008,28(4):360-364. [3] JIANG H L,TAY J H,LIU Y,et al.Ca2+ augmentation for enhancement of aerobically grown microbialgranules in sludge blanketreactors[J].Biotechnology Letters,2003,25:95-99. [4] LI X M,LIU Q Q,YANG Q,et al.Enhanced aerobic sludge granulation in sequencing batch reactor by Mg2+ augmentation[J].Bioresource Technology,2009,100(1):64-67. [5] YU H Q,FANG H H,TAY J H.Effects of Fe2+on sludge granulation in upflow anaerobic sludge blanketreactors[J].Water Science Technology,2000,41(12):199-205. [6] 李昱欢.好氧污泥强化造粒过程中不同元素的空间分布规律及微生物群落演替特征[D].西安:西安建筑科技大学,2017. [7] 程祯.好氧污泥强化造粒过程中EPS的分布及变化规律[D].西安:西安建筑科技大学,2015. [8] GHANGREKAR M M,ASOLEKAR S R,RANGANANTHAN K R,et al.Experience with UASB reactor start-up under different operating conditio[J].Water Science and Technology,1996,34(5/6):421-428. [9] 王福馄,刘永军,宋雪松,等.颗粒污泥破碎—再形成过程中微生物胞外聚合物(EPS)的变化及其与污泥特性的相关性分析[J].环境化学,2013,32 (12):2233-2242. [10] 国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002. [11] WANG X H,GAI L H,SUN X F,et al.Effects of long-term addition of Cu(Ⅱ) and Ni(Ⅱ) on the biochemical properties of aerobic granules in sequencing batch reactors[J].Applied Microbiology & Biotechnology,2010,86(6):1967-75. [12] AWANG N A,SHAABAN M G.Effect of reactor height/diameter ratio and organic loading rate on formation of aerobic granular sludge in sewage treatment[J].International Biodeterioration & Biodegradation,2016,112:1-11. [13] 王磊,湛含辉,王晴晴,等.好氧颗粒污泥快速培养影响参数及方法研究进展[J].环境工程,2020,38(5):1-7,29. [14] LIU Y J,LIU Z,WANG F K,et al.Regulation of aerobic granular sludge reformulation after granular sludge broken:effect of poly aluminum chloride (PAC)[J].Bioresource Technology,2014,158 (4):201-208. [15] 李洋媚.铝盐在好氧污泥颗粒化过程中的强化作用及其分布特征[D].西安:西安建筑科技大学,2017. [16] MERSI W V,SCHINNER F.An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride[J].Biology & Fertility of Soils,1991,11(3):216-220. [17] 国家环境保护总局.城镇污水处理厂污染物排放标准:GB 18918—2002[S].北京:中国环境出版社,2003. [18] 袁强军,张宏星,陈芳媛.不同低碳氮比废水中好氧颗粒污泥的长期运行稳定性[J].环境科学,2020,41(10):4661-4668. [19] 李婷.好氧颗粒污泥对有机污染物吸附性能及机制的研究[D].哈尔滨:黑龙江科技大学,2016. [20] 吴佳培.好氧颗粒污泥同步脱氮除磷效能及其稳定性研究[D].哈尔滨:哈尔滨工业大学,2008. [21] 李昱欢,刘永军,李洋媚,等.解体好氧颗粒污泥强化修复及其微生物群落演替特征[J].工业水处理,2017,37(6):39-43.
点击查看大图
计量
- 文章访问数: 212
- HTML全文浏览量: 39
- PDF下载量: 16
- 被引次数: 0