INFLUENCE OF EVAPORATION-CONDENSATION AEROSOL POLYDISPERSITY ON THE PENETRATION MEASUREMENT
-
摘要: 为研究蒸发冷凝式气溶胶多分散性对滤料透过率试验的影响程度,分别测试了从低效到高效多种滤料在不同过滤速度、不同粒数中值粒径下的透过率。通过修正计算得到典型过滤速度下的真实透过率曲线,与试验透过率对比发现:最易穿透粒径全部位于0.1~0.3 μm;试验测得最易穿透粒径呈负偏差,与修正后的数值相对误差小,最大不超过1.5%;试验气溶胶多分散性导致的透过率误差极值出现在最易穿透粒径处,呈负偏差,低效滤料相对误差较小,极值最低为2.4%,高效滤料极值最大约为10%。因此,在最易穿透粒径范围附近,蒸发冷凝式单分散试验气溶胶测出的最易穿透粒径和透过率是真实有效的。Abstract: To study the impact of evaporation-condensation aerosol polydispersity on the penetration measurement experiment, the penetrations of various filter materials from low to high filtration efficiency were measured at different particle count median diameter and face filtration velocity. The true penetration curves at typical filtration velocity were obtained by corrected calculation, and compared with the test penetration, which was found that all the most penetrating particle sizes were all in the range of 0.1 μm to 0.3 μm. The most penetrating particle size measured in the test had a negative deviation, and the relative error with the corrected value was very small, with a maximum value within 1.5%. The extreme value of the penetration error caused by the polydispersity of the test aerosol appeared at the position of the most easily penetrated particle size, showing a negative deviation. The relative error of the low-efficiency filter material was small, with the minimum value of 2.4%, and the maximum value of the high-efficiency filter material was about 10%. It was concluded that in the range of the most penetrating particle size, the most easily penetrated particle size and penetration measured by evaporation-condensation monodisperse aerosol were valid.
-
Key words:
- monodisperse aerosol /
- evaporation-condensation /
- relative error /
- polydispersity /
- penetration
-
[1] WHITESIDE M,HERNDON J M,et al.Coal fly ash aerosol:risk factor for lung cancer[J].Journal of Advances in Medicine and Medical Research,2018,25(4):1-10. [2] 高瑞.大气颗粒物及其气溶胶组分促肺癌作用机制研究[D].太原:山西大学,2020. [3] 夏艺.大气细颗粒物(PM2.5)暴露大鼠肺部微结构改变的影像研究[D].上海:中国人民解放军海军军医大学,2021. [4] MATYS J,GRZECH-LEŚNIAK K. Dental aerosol as a hazard risk for dental workers[J].Materials,2020,13(22):5109. [5] HAMMER T,GAO H C,PAN Z Y,et al.Relationship between aerosols exposure and lung deposition dose[J].Aerosol and Air Quality Research,2020,20(5):1083-1093. [6] STADNYTSKYI V,BAX C E,BAX A,et al.The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission[J].Proceedings of the National Academy of Sciences,2020,117(22):11875-11877. [7] PICH J.Gas Filtration Theory[M].Filtration.Routledge,2017:1-132. [8] NAZARENKO Y.Air filtration and SARS-CoV-2[J].Epidemiology and Health,2020,42:e2020049. [9] KANAOKA C.Fine particle filtration technology using fiber as dust collection medium[J].KONA Powder and Particle Journal,2019,36:88-113. [10] ZHOU Z J,ZHOU B,TSENG C H,et al.Evaluation of characterization and filtration performance of air cleaner materials[J].International Journal of Environmental Science and Technology,2021,18(8):2209-2220. [11] HWANG S H,LEE B H.Comparison of melt-blown and glass-fiber HEPA asbestos filters based on ISO filter classes,filtration efficiency,power consumption,and face velocity[J].Journal of the Air & Waste Management Association,2021:1-10. [12] 张小鹏,钱晓明,刘璐,等.玻璃纤维过滤材料的研究现状[J].化工新型材料,2021,49(7):225-228. [13] CHENG X,ZHANG J.Comparison of turbine oil method with other methods[J].20th DOE/NRC NACC Proceedings,1988:1146-1165. [14] BOSKOVIC L,AGRANOVSKI I E,BRADDOCK R D.Filtration of nanosized particles with different shape on oil coated fibres[J].Journal of Aerosol Science,2007,38(12):1220-1229. [15] 国家标准局.高效空气过滤器性能试验方法效率和阻力:GB 6165[S].北京:中国标准出版社,2008. [16] 冯昕,江锋,张惠,等.高效空气过滤器国标体系主要修订内容解读[J].暖通空调,2020,50(2):39-45. [17] ILLÉS B,GORDON P.Filtering efficiency measurement of respirators by laser-based particle counting method[J].Measurement,2021,176:109173. [18] ROMAY-NOVAS F J,PUI D Y H.Generation of monodisperse aerosols in the 0.1-1.0-μm diameter range using a mobility classification-inertial impaction technique[J].Aerosol science and technology,1988,9(2):123-131. [19] 林秉乐.超小 DOS 单分散气溶胶粒子发生器[J].洁净与空调技术,1996(3):22-25. [20] BINGYUE L,PEIMING F,LIDA X,et al.A HEPA,ULPA filter media DOP tester[J].China Powder Science and Technology,1999,3. [21] 沈大鹏,刘群,史英霞,等.凝聚式单分散气溶胶发生方法研究[J].辐射防护,2010 (5):277-283. [22] 江锋,庄子威,张振中,等.用于 HEPA 滤料效率检测的蒸发冷凝技术[J].清华大学学报 (自然科学版),2015,54(5):629-632. [23] SINCLAIR D,LA MER V K.Light scattering as a measure of particle size in aerosols.the production of monodisperse aerosols[J].Chemical reviews,1949,44(2):245-267. [24] JENG C J,KINDZIERSKI W B,SMITH D W.Aerosol generation using a joint vapor-nuclei type generator:factorial design to characterize its performance[J].Journal of Environmental Engineering and Science,2005,4(3):209-219. [25] AREFIN A M E,MASUD M H,JOARDDER M U H,et al.A monodisperse-aerosol generation system:design,fabrication and performance[J].Particuology,2017,34:118-125. [26] QIN G X,PAN L L,XU Y N,et al.Design of a mono-disperse aerosol generator for efficiency testing of HEPA filter[J].SN Applied Sciences,2021,3(4):1-8. [27] 门泉福,王跃发,史喜成,等.基本单分散气溶胶透过率测试中真实值的计算[J].环境工程学报,2012,6(3):971-976. [28] HEIDENREICH S,EBERT F.Condensational droplet growth as a preconditioning technique for the separation of submicron particles from gases[J].Chemical Engineering and Processing:Process Intensification,1995,34(3):235-244. [29] 刘润哲,朱诗杰,钟欣,等.细颗粒在蒸汽冷凝相变过程中的长大特性[J].高校化学工程学报,2019,33(2):290-297. [30] 巴伦,维勒克,白志鹏,等.气溶胶测量:原理、技术及应用[M].北京:化学工业出版社,2007. [31] 门泉福,任川齐,康凯,等.高浓度单分散 DOP 气溶胶发生系统及其性能测试[J]. [32] 刘志军,王智超.凝聚式单分散气溶胶发生技术的探讨[J].中国粉体技术,2007,13(2):30-33. [33] 余涛,张振中,江锋,等.蒸发冷凝法亚微米气溶胶发生装置的最佳运行参数[J].清华大学学报(自然科学版),2010,50(3):426-429. [34] KIRSCH A.The theory of aerosol filtration with fibrous filters[J].Fundamentals of Aerosol Science,1978. [35] BROWN R.Airflow through filters-beyond single-fiber theory[J].Advances in Aerosol Filtration,1998:153-172.
点击查看大图
计量
- 文章访问数: 132
- HTML全文浏览量: 21
- PDF下载量: 2
- 被引次数: 0