INFLUENCE OF DIFFERENT CONSOLIDATION FACTORS ON MOISTURE CONTENT AND PERMEABILITY OF WASTE SLURRY
-
摘要: 为研究化学固结处理废弃泥浆过程中固结体含水率和渗透性的影响因素,选择高吸水性树脂(SAP)和水泥作为固结材料,采用由中压滤失仪改装而成的渗透仪器对废弃泥浆开展室内固结试验,研究不同固结材料、材料配比、固结时间对固结体含水率、渗透性的影响。结果表明:24 h内配比>5%的SAP对固结体含水率降低表现优于水泥,168 h后,同配比水泥表现优于SAP。SAP组固结体渗透性优于水泥组,配比提至7%,固结时间达到72 h后,SAP组渗透性不减反增,水泥配比<7%时,提高配比对渗透性阻断作用提升效果显著。经分析,固结体渗透性和含水率存在正相关,含水率通过改变渗流通道数量而影响渗透性。配比为5%的SAP和7%水泥能够使废弃泥浆达到较好的固结效果。Abstract: In order to study the influencing factors of moisture content and permeability of the consolidated body in the process of chemical consolidation treatment of waste slurry, super absorbent polymer (SAP) and cement were selected as the consolidation materials, and indoor consolidation tests were carried out on the waste mud to study different consolidations. The effects of materials, material ratios, and consolidation time on moisture content of the consolidated body were tested on a permeation instrument modified from a medium pressure filter loss instrument, to study the effects of the above factors on permeability. The results showed that SAP over 5% in 24 hours was better in reducing moisture content than cement, and after 168 h, cement with the same ratio was better than SAP. The permeability of the SAP group was better than that of the cement group, and the ratio was increased to 7%. After the consolidation time reached 72 h, the permeability of the SAP group didn’t continue to decrease but increased. When the cement ratio was below 7%, when increasing the ratio to permeability, the effect of sexual blocking became more significant. After analysis, there was a positive correlation between the permeability of the consolidated body and the moisture content, and the moisture content affected the permeability by changing the number of seepage channels. 5% SAP and 7% cement made the waste slurry achieve a better consolidation effect.
-
Key words:
- waste slurry /
- chemical consolidation treatment /
- moisture content /
- permeability /
- seepage channel
-
[1] 黎强,邹强,杨琳,等.废弃钻井液不落地达标处理技术在塔里木油田的应用[J].环境工程,2014,32(增刊1):82-84. [2] JADITAGER M,SIVAKUGAN N.Consolidation behavior of fly ash-based geopolymer-stabilized dredged slurry[J].Journal of Waterway Port Coastal & Ocean Engineering,2018,144(4):1-7. [3] 杨子健,刘阳生.水基钻井固体废物处理处置技术研究进展[J].环境工程,2021,39(10):143-149. [4] LIN J L,LI J S.Reduction and resources treatment of construction waste slurry[J].IOP Conference Series:Earth and Environmental Science,2019,233(5):52-55. [5] 吴思麟,朱伟,闵凡路,等.泥浆真空抽滤泥水分离中堵塞机理及规律性研究[J].岩土工程学报,2017,39(8):1530-1537. [6] 梁止水,杨才千,高海鹰,等.建筑工程废弃泥浆快速泥水分离试验研究[J].东南大学学报(自然科学版),2016,46(2):427-433. [7] 张钦喜,陶韬,王晓杰,等.钻孔灌注桩废弃泥浆处理的试验研究[J].水利学报,2015,46(增刊1):40-45. [8] 詹良通,张斌,郭晓刚,等.废弃泥浆底部真空-上部堆载预压模型试验研究[J].岩土力学,2020,41(10):3245-3254. [9] 田浩,赵会军.废弃油基泥浆处理工艺与研究[J].环境工程,2014,32(增刊1):310-313. [10] 石振明,薛丹璇,彭铭,等.泥水盾构隧道废弃泥浆改性固化及强度特性试验[J].工程地质学报,2018,26(1):103-111. [11] 王光坤,武亚军.工程废浆的絮凝及固结特性试验研究[J].水电能源科学,2017,35(12):116-119. [12] 傅小姝,王江营,张贵金,等.不同pH值下水泥土力学与渗透特性试验研究[J].铁道科学与工程学报,2017,14(8):1639-1646. [13] VINAI R,OGGERI C,PEILA D.Soil conditioning of sand for EPB applications:a laboratory research[J].Tunnelling and Underground Space Technology,2008,23(3):308-317. [14] 武亚军,牛坤,唐海峰,等.药剂真空预压法处理工程废浆中生石灰的增渗作用[J].岩土力学.2017,38(12):3453-3461. [15] 韦猛,亓金慧,张宁馨,等.吸水树脂用于废弃泥浆处理的试验研究[J].煤田地质与勘探,2019,47(6):207-211. [16] 石振明,薛丹璇,彭铭,等.泥水盾构隧道废弃泥浆改性固化及强度特性试验[J].工程地质学报,2018,26(1):103-111. [17] 龚方泽.福建省高液限土路基化学固化机理与耐久性研究[D].福州:福州大学,2017. [18] 马耀邦.SAP混凝土力学性能试验研究[D].天津:天津大学,2016. [19] 陈亮.建筑桩基工程泥浆处理技术[D].重庆:重庆交通大学,2016. [20] 苏霈洋,贾静.围压与含水率对煤体渗透特性影响研究[J].山西科技,2020,35(6):31-34.
点击查看大图
计量
- 文章访问数: 160
- HTML全文浏览量: 14
- PDF下载量: 1
- 被引次数: 0