OPTIMIZATION OF DESIGN OF TERMINAL FLOW INTERCEPTION AND STORAGE FACILITIES OF COMBINED DRAINAGE SYSTEM BASED ON NSGA-Ⅲ ALGORITHM
-
摘要: 在城市排水系统中,截流调蓄设施是控制合流制溢流(CSO)的一项重要措施。通过将暴雨管理模型(SWMM)与多目标遗传算法(NSGA-Ⅲ)相结合,对截流调蓄设施优化设计问题进行求解。该方法以截流效率、建设成本、水泵启停次数作为模型的优化目标,实现了截流调蓄设施规模的多目标优化。通过对SWMM进行面向对象的重新编码,实现了多线程计算和SWMM与NSGA-Ⅲ模块之间的快速数据交换,避免了频繁的文件操作,求解速率可提升至单线程计算的16倍。利用该方法对武汉市某合流制管网末端截流调蓄设施进行了优化设计,结果表明:该方法所确定的优化设计方案的建设成本可降低为原设计方案的60%,且在截流效率、调蓄池容积等方面更具优势。Abstract: The interception facility is an important and frequently-used measure for combined sewer overflows (CSOs) control in city-scale drainage systems. By combining the stormwater management model (SWMM) with the multi-objective genetic algorithm (NSGA-Ⅲ), the optimal design problems of interception and storage facilities were solved. The method took the interception efficiency, construction cost, and the number of pump startup/shutoff times as the optimization objectives of the model, and achieved multi-objective optimization of the interception and storage facility scale. Through object-oriented recoding of SWMM, multi-threaded calculation and fast data exchange between SWMM and NSGA-Ⅲ modules were realized, frequent file operations were avoided, and the solution efficiency was increased to 16 times that of single-threaded calculation. The method was used to optimize the design of terminal flow interception and storage facilities for a combined drainage system in Wuhan. The results indicated the construction cost of the optimized design was reduced to 60% of the original design, and it had more advantages in the aspects of interception efficiency and storage pool volume.
-
Key words:
- drainage network /
- overflow pollution control /
- design optimization /
- SWMM /
- NSGA-Ⅲ
-
[1] 杨正,赵杨,车伍,等.典型发达国家合流制溢流控制的分析与比较[J].中国给水排水,2020,36(14):29-36. [2] 程熙,车伍,唐磊,等.美国合流制溢流控制规划及其发展历程剖析[J].中国给水排水,2017,33(6):7-12. [3] 陈嫣.日本大城市雨水综合管理分析和借鉴[J].中国给水排水,2016,32(10):42-47. [4] 张璐.基于污染控制的合流制排水管网溢流调蓄容积优化研究[D].重庆:重庆大学,2018. [5] 中华人民共和国住房和城乡建设部.室外排水设计规范:GB 50014—2006[S].北京:中国计划出版社,2017. [6] 何胜男,陈文学,刘燕,等.基于人工神经网络和粒子群优化的初期雨水调蓄池设计方法研究[J].水利学报,2020,51(12):1558-66. [7] WANG M M,SUN Y X,SWEETAPPLE C.Optimization of storage tank locations in an urban stormwater drainage system using a two-stage approach[J].Journal of Environmental Management,2017,204:31-38. [8] 中华人民共和国住房和城乡建设部.海绵城市建设评价标准:GB/T 51345—2018[S].北京:住房和城乡建设部,2018. [9] 彭畅,彭森,吴卿,等.基于NSGA-Ⅱ的给水管网压力监测点多目标优化布置[J].中国给水排水,2019,35(1):58-62. [10] 刘书明,李明明,王欢欢,等.基于NSGA-Ⅱ算法的给水管网多目标优化设计[J].中国给水排水,2015,31(5):50-53. [11] DEB K,PRATAP A,AGARWAL S,et al.A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197. [12] DEB K,JAIN H.An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach,Part Ⅰ:solving problems with box constraints[J].IEEE Transactions on Evolutionary Computation,2014,18(4):577-601. [13] 李建美,田军仓.NSGA-Ⅲ算法在水资源多目标优化配置中的应用[J].水电能源科学,2021,39(2):22-26,81. [14] SWATHI V,RAJU K S,VARMA M,et al.Automatic calibration of SWMM using NSGA-Ⅲ and the effects of delineation scale on an urban catchment[J].Journal of Hydroinformatics,2019,21(4):781-797. [15] 武汉市规划研究院.武汉市交通市政规划工程投资估算指标(2017年修订)[S].
点击查看大图
计量
- 文章访问数: 153
- HTML全文浏览量: 13
- PDF下载量: 6
- 被引次数: 0