POLLUTION CONTROL OF ACID FLUORINE-CONTAINING WASTEWATER FROM LARGE ABANDONED GRAPHITE MINES: A CASE STUDY ON YUESHI MINE PIT IN NANSHU TOWN, LAIXI IN SHANDONG PROVINCE
-
摘要: 针对历史遗留的大型废弃石墨矿坑酸性含氟废水存在体量大、深层水加药困难、反应效率低、污染严重、治理经验罕见等问题,为探索其污染治理模式,以莱西市南墅镇岳石矿坑废水治理为例进行了分析与研究。基于实验室废水处理实验,进行修复药剂优选;基于实地调研,通过构建三维矿坑模型及水动力模型计算,模拟不同运行工况下的水体置换和治理效果,提出"复配修复药剂+原位水体交换"方案,治理后,矿坑废水pH值达到7左右,氟化物浓度降至30 mg/L以下,达到废水治理目标。在治理过程中建立的系统性水污染修复技术体系,对其他地区大规模的酸性含氟废水污染治理具有重要的参考意义。Abstract: Given the problems of acid fluorine-containing wastewater from large abandoned graphite mines left over from history, such as large volume, difficult dosing of deep water, low reaction efficiency, serious pollution and less treatment experience, we explored its controlling mode, taking Yueshi Mine wastewater in Nanshu Town, Laixi in Shandong Province as the research object. Based on the laboratory wastewater treatment test, the remediation agent was optimized. Based on the field investigation, through the construction of a three-dimensional mine model and hydrodynamic model calculation, the effect of water displacement under different operating conditions was simulated, and the optimal technological scheme was determined. Finally, the scheme of compound remediation agent with in-situ water exchange was put forward. After treatment, the pH value of mine wastewater reached about 7, and the fluoride concentration dropped below 30 mg/L, reaching the wastewater treatment goal. The water pollution remediation technology system established in the treatment process provide a reference for large-scale acid fluoride wastewater treatment in other areas.
-
[1] 瞿露,付宏祥,汪诚文,等.钙盐法处理太阳能电池生产含氟废水的污泥产量及成分研究[J].环境工程,2014,32(1):147-152. [2] 王杰,李梅,张绪锐,等.沉淀法处理含氟工业废水的研究现状[J].低温与特气,2021,39(5):1-3,41. [3] SINGH J,SINGH P,SINGH A,et al.Fluoride ions vs removal technologies:A study[J].Arabian Journal of Chemistry,2016,9(6):815-824. [4] 张焕祯,王振川,赵韵琪,等.石灰——CaCl2絮凝法处理酸性高氟废水的试验研究[J].环境工程,1995,13(1):8-10. [5] 李喜林,张颖,曹娟,等.氟化工产业园区污水处理工程实例[J].水处理技术,2019,45(4):135-138. [6] 刘玉华,林岚.石墨提纯工业酸性废水的处理工艺分析[J].化纤与纺织技术,2021,50(6):36-37. [7] 方佳洁,祁泓博,吕龙俊,等.化学混凝法处理含氟废水的研究[J].辽宁化工,2021,50(11):1648-1650. [8] 胡家朋,吴代赦,刘瑞来,等.羟基镧改性树脂的制备及其对氟离子的吸附[J].安全与环境学报,2016,16(5):237-241. [9] 杨岚,张明华.硅藻土作为吸附材料去除水中氟的研究进展[J].煤炭与化工,2014,37(11):157-160. [10] 卢永,冯向文,汪林,等.化学沉淀-纳米吸附工艺深度处理含氟废水的研究[J/OL].工业水处理:1-8[2022-05-23].http://kns.cnki.net/kcms/detail/12.1087.TQ.20220110.1731.006.html. [11] 赵雨,李含,许海民,等.金属氧化物纳米复合材料用于污水除氟的研究进展[J/OL].工业水处理:1-11[2022-05-23].DOI: 10.19965/j.cnki.iwt.2021-0876. [12] 辛岩.离子交换法处理含氟废水的实验研究[J].黑龙江科技信息,2017(15):19. [13] LUNA J,VILLAFAE J F M,MONTERO C,et al.Defluoridation of groundwater in central Mexico by electrocoagulation[J].Fluoride,2018,51(1):34-43. [14] 罗胜,朱铭,田秉晖,等.电渗析水处理除氟的研究进展及主要影响因素[J/OL].工业水处理:1-21[2022-05-23].DOI: 10.19965/j.cnki.iwt.2021-1159. [15] 周武超,付权锋,张运武,等.含氟废水处理技术的研究进展[J].化学推进剂与高分子材料,2013,11(1):45-50. [16] 赵兴华,戴楠楠.含氟废水处理技术简析[J].中国盐业,2021 (9):58-60. [17] 卢建杭,刘维屏,郑巍.铝盐混凝去除氟离子的作用机理探讨[J].环境科学学报,2000,20(6):709-713. [18] 杨涛.钙盐沉淀+混凝沉淀工艺处理石墨加工废水[J].中国高新技术企业,2011(10):121-123. [19] 国家环境保护局.水质氟化物的测定离子选择电极法:GB/T 7484—1987[S].中国标准出版社,1987. [20] 国家环境保护总局.水质 pH值的测定玻璃电极法:GB/T 6920—1986[S].中国标准出版社,1987. [21] 环境保护部.水质采样方案设计技术规定:HJ 495—2009[S].中国环境科学出版社,2010. [22] 生态环境部.,环境影响评价技术导则地表水环境:HJ 2.3—2018[S].中国环境科学出版社,2018. [23] BURCHARD H,BAUMERT H.On the performance of a mixed-layer model based on the κ-ε turbulence closure[J].Journal of Geophysical Research Oceans,1995,100(C5):8523-8540.
点击查看大图
计量
- 文章访问数: 141
- HTML全文浏览量: 10
- PDF下载量: 11
- 被引次数: 0