LIFE CYCLE ASSESSMENT OF HYDRODESULFURIZATION WASTE METAL CATALYST RECOVERY PROCESS
-
摘要: 基于生命周期评价法(LCA)评价加氢脱硫废金属催化剂回收生产过程的环境影响,将回收生产过程分为6个阶段,选取了12种关键环境影响类型,通过建立物质投入及排放清单,基于eBalance软件进行建模和计算。结果表明:回收1 t废催化剂的总环境影响为1.11E-08,其中,全球变暖效应潜值(GWP)是废催化剂回收生产过程中最大的环境影响贡献类型。焙烧阶段的环境影响贡献最大,其次为提取钴镍阶段、浓缩蒸发阶段、提取钼钒阶段,预处理阶段、运输阶段的环境影响贡献很小。基于生命周期评价法提出能源替代方案,清洁能源替代方案的环境影响为4.98E-09,较回收工艺环境影响削减了55.16%的环境影响。Abstract: This paper evaluates the environmental impact of the recycling production process of hydrogen desulfurization waste metal catalyst, based on the life cycle assessment(LCA), divides the whole recycling production process into six stages, selects 12 key environmental impact types, establishes material input and emission list, and conducts the model building and calculation based on eBalance software. The results showed that the total environmental impact of recovering 1 ton of spent catalyst is 1.11E-08, and the potential value of the GWP(potential value of the global warming effect) is the largest environmental impact contribution type in the process of recovering spent catalyst. The environmental impact contribution of the roasting stage is the largest, followed by the cobalt nickel extraction stage, concentration evaporation stage and then molybdenum vanadium extraction stage, while the environmental impact contribution of the pretreatment stage and transportation stage is very small. The energy alternative is proposed based on the life cycle evaluation analysis, and the environmental impact of the clean energy alternatives is 4.98E-09, reduced by 55.16% from the environmental impact of recycling process.
-
[1] MARAFI M,RANA M S.Metal leaching from refinery waste hydroprocessing catalyst[J].Journal of environmental science and health.Part A,Toxic/hazardous substances & environmental engineering,2018,53(11).951-959. [2] YE X L,GUO S H,QU W W,et al.Microwave sodium roasting (MWSR) spent HDS catalysts for recovery Mo and in situ sulfur fixation[J].Journal of the Taiwan Institute of Chemical Engineers,2019,97:146-157. [3] 孙佳琪.兰州石化废催化剂金属提取方法研究[D].青岛:中国石油大学(华东),2018. [4] 李志,韩志敏.从石油化工废催化剂中回收铂族金属的研究进展[J].天津化工,2021,35(3):3-5. [5] 陈国祥,苑志伟,蒋绍洋,等.从废催化剂中回收贵金属铑的技术进展[J].中外能源,2021,26(2):65-69. [6] DUFRESNE P.Hydroprocessing catalysts regeneration and recycling[J].Applied Catalysis,2007,322:67-75. [7] 邬建辉,王刚,张文宏,等.含钨钼废催化剂回收工艺研究进展[J].中国资源综合利用,2013,31(8):42-45. [8] SILVY R P.Future trends in the refining catalyst market[J].Applied Catalysis,2004,261(2):247-252. [9] ISO.ISO 14040 Environment management-life cycle assessment-requirements and guidelines[S].Geneva,Switzerland,2006. [10] JIAO J L,LI J J,BAI Y.Uncertainty analysis in the life cycle assessment of cassava ethanol in China[J].Journal of cleaner production,2019,206(Jan.1 Pt.1/1156):438-451.
点击查看大图
计量
- 文章访问数: 256
- HTML全文浏览量: 34
- PDF下载量: 3
- 被引次数: 0