COMPREHENSIVE EVALUATION METHOD FOR PERFORMANCE AND ENVIRONMENTAL BENEFITS OF MINERAL ADMIXTURE CONCRETE
-
摘要: 混凝土是建筑工程和海岸工程中使用量最大、应用范围最广的建筑材料。将矿物掺合料作为辅助胶凝材料加入混凝土中,既能废物利用提高环境效益,还可以提升混凝土的部分性能。为准确评估矿物掺合料混凝土安全性、耐久性和环境友好性,提出了一种矿物掺合料混凝土综合评价方法。基于环境影响生命周期评估(LCA)理论,通过实景数据与资料调研建立了粉煤灰、粒化高炉矿渣粉、煤矸石粉、赤泥、玻璃粉5种矿物掺合料的环境影响清单和矿物掺合料混凝土对于7种环境影响指标的计算方法。采用社会支付意愿法(WTP),以环境保护税、资源税为框架,将不同环境影响指标统一货币化,并结合混凝土的强度和耐久性指标提出矿物掺合料混凝土的性能与环境效益综合评价方法,以期为发展环境友好高性能混凝土提供定量评价依据。Abstract: Concrete is the most widely used building material in construction engineering and coastal engineering. The addition of mineral admixtures as auxiliary cementitious materials to concrete can not only improve environmental benefits through waste utilization, certain mineral admixtures can also improve certain properties of concrete. To objectively evaluate the comprehensive performance of mineral admixture concrete’s safety, durability and environmental friendliness,a comprehensive evaluation method of mineral admixture concrete was proposed. First, based on the life cycle assessment theory of environmental impact, environmental impact lists of five mineral admixtures including fly ash, granulated blast furnace slag powder, coal gangue powder, red mud, and glass powder were established through real-world data and investigation. And the calculation methods of mineral admixture concrete for seven environmental impact indicators were established. The social willingness to pay method was adopted to uniformly monetize different environmental impact indicators under the framework of environmental protection tax and resource tax. Combined with the strength and durability indicators of concrete, a comprehensive evaluation method for the performance and environmental benefits of mineral admixture concrete was proposed. This method can provide a quantitative evaluation basis for the development of eco-friendly high-performance concrete.
-
Key words:
- mineral admixtures /
- concrete /
- environmental benefits /
- material properties /
- LCA /
- comprehensive evaluation method
-
[1] FEIZ R,AMMENBERG J,BAAS L,et al.Improving the CO2 performance of cement,part Ⅰ:utilizing life-cycle assessment and key performance indicators to assess development within the cement industry[J].Journal of Cleaner Production,2015,98:272-281. [2] ZIMMERMANN M,ALTHAUS H J,HAAS A.Benchmarks for sustainable construction:a contribution to develop a standard[J].Energ Buildings,2005,37(11):1147-1157. [3] BRIBIAN I Z,CAPILLA A V,USON A A.Life cycle assessment of building materials:comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential[J].Building and Environment,2011,46(5):1133-1140. [4] MEYER C.The greening of the concrete industry[J].Cement Concrete Comp,2009,31(8):601-605. [5] JOSA A,AGUADO A,CARDIM A,et al.Comparative analysis of the life cycle impact assessment of available cement inventories in the EU[J].Cement Concrete Res,2007,37(5):781-788. [6] SCRIVENER K L,KIRKPATRICK R J.Innovation in use and research on cementitious material[J].Cement Concrete Res,2008,38(2):128-136. [7] MARINKOVIC S,RADONJANIN V,MALESEV M,et al.Comparative environmental assessment of natural and recycled aggregate concrete[J].Waste Manage,2010,30(11):2255-2264. [8] van DEN HEEDE P,de BELIE N.Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes:literature review and theoretical calculations[J].Cement Concrete Comp,2012,34(4):431-442. [9] PROSKE T,HAINER S,REZVANI M,et al.Eco-friendly concretes with reduced water and cement content-Mix design principles and application in practice[J].Construction and Building Materials,2014,67:413-421. [10] ORTIZ O,CASTELLS F,SONNEMANN G.Sustainability in the construction industry:a review of recent developments based on LCA[J].Construction and Building Materials,2009,23(1):28-39. [11] PANDEY D,AGRAWAL M,PANDEY J S.Carbon footprint:current methods of estimation[J].Environ Monit Assess,2011,178(1/2/3/4):135-160. [12] OZAWA-MEIDA L,BROCKWAY P,LETTEN K,et al.Measuring carbon performance in a UK University through a consumption-based carbon footprint:De Montfort University case study[J].Journal of Cleaner Production,2013,56:185-198. [13] 周晓霞,宋子岭.两种混凝土的生命周期评价[J].环境工程,2009,27(增刊1):472-475. [14] 孙逸文.粉煤灰混凝土生命周期社会影响评价研究[D].北京:北京交通大学,2015. [15] BLANKENDAAL T,SCHUUR P,VOORDIJK H.Reducing the environmental impact of concrete and asphalt:a scenario approach[J].Journal of Cleaner Production,2014,66:27-36. [16] 田钟维.基于LCA-LCC的再生混凝土环境经济性能评估研究[D].杭州:浙江大学,2012. [17] 李化建,谢永江,谭盐宾,等.高速铁路混凝土绿色度评价[J].铁道学报,2012,34(11):122-126. [18] 李礼.建筑材料绿色性的6E综合评价体系研究[D].大连:大连理工大学,2012. [19] 徐海军.绿色混凝土的研究现状及其发展趋势[J].广州建筑,2008(6):3-5. [20] HENRY M,PARDO G,NISHIMURA T,et al.Balancing durability and environmental impact in concrete combining low-grade recycled aggregates and mineral admixtures[J].Resour Conserv Recy,2011,55(11):1060-1069. [21] 贾沁林.我国绿色建材评价体系研究[D].北京:北京建筑大学,2017. [22] 吴思美.基于模糊TOPSIS法绿色建材推广性的研究[D].西安:长安大学,2014. [23] 陈婷.基于废渣混凝土的建筑物绿色度研究[D].西安:长安大学,2017. [24] CLCD中国生命周期基础数据库[EB/OL].http://www.ike-global.com/. [25] Environmental management e life cycle assessment e principles and frameworks,ISO(2006) 14.040[S]. [26] Environmental management e life cycle assessment e requirements and guidelines,ISO(2006) 14.044[S]. [27] ZHAO H L,LIU F,LIU H Q,et al.Comparative life cycle assessment of two ceramsite production technologies for reusing municipal solid waste incinerator fly ash in China[J].Waste Manage,2020,113:447-455. [28] 林锦,陈云嫩,陆柳鲜,等.基于生命周期评价法的铜尾矿资源化利用的环境效益分析[J].有色金属科学与工程,2021,12(3):106-112,121. [29] 郑晓云,张爱阳,席冰冰.基于LCA-LCC的轻钢住宅节碳成效及技术经济分析[J].建筑钢结构进展,2020,22(1):126-132. [30] LAURENT A,CLAVREUL J,BERNSTAD A,et al.Review of LCA studies of solid waste management systems-Part Ⅱ:methodological guidance for a better practice[J].Waste Manage,2014,34(3):589-606. [31] 章玉容.粉煤灰混凝土生命周期环境影响综合评价[D].北京:北京交通大学,2016. [32] 李小冬,王帅,孔祥勤,等.预拌混凝土生命周期环境影响评价[J].土木工程学报,2011,44(1):132-138. [33] 高唱.基于LCA的再生混凝土环境影响评价研究[D].北京:北京建筑大学,2020. [34] 刘光焰,高鹏飞,李德成,等.基于价值工程分析法的玻璃粉混凝土经济性分析[J].混凝土,2020(6):163-165,174. [35] 王帅.商品混凝土生命周期环境影响评价研究[D].北京:清华大学,2009. [36] VIEIRA D R,CALMON J L,COELHO F Z.Life cycle assessment (LCA) applied to the manufacturing of common and ecological concrete:a review[J].Construction and Building Materials,2016,124:656-666. [37] STOCKER T F,QIN D,PLATTNER G K,et al.Climate Change 2013[M].New York:Cambridge University,2013. [38] GABATHULER H.The CML story-How environmental sciences entered the debate on LCA[J].International Journal of Life Cycle Assessment,2006,11:127-132. [39] JOLLIET O,MARGNI M,CHARLES R,et al.IMPACT 2002+:a new life cycle impact assessment methodology[J].Int J of LCA,8:324-330. [40] HUIJBREGTS M A J,STEINMANN Z J N,ELSHOUT P M F,et al.ReCiPe2016:a harmonised life cycle impact assessment method at midpoint and endpoint level (vol 22,pg 138,2017)[J].International Journal of Life Cycle Assessment,2020,25(8):1635-1635. [41] BLENGINI G A,GARBARINO E.Resources and waste management in Turin (Italy):the role of recycled aggregates in the sustainable supply mix[J].Journal of Cleaner Production,2010,18(10/11):1021-1030. [42] BRAGA A M,SILVESTRE J D,DE BRITO J.Compared environmental and economic impact from cradle to gate of concrete with natural and recycled coarse aggregates[J].Journal of Cleaner Production,2017,162:529-543. [43] 范允奇.我国碳税效应、最优税率和配置机制研究[D].北京:首都经济贸易大学,2012. [44] 姚昕,刘希颖.基于增长视角的中国最优碳税研究[J].经济研究,2010,45(11):48-58. [45] MEHTA P K.Durability of concrete-fifty years of progress[J].Special Publication. [46] 田俊峰,王胜年,黄君哲,等.海港工程混凝土耐久性设计与寿命预测[J].中国港湾建设,2004(6):1-3,44. [47] WANG Y Z,LIU C X,WANG Y C,et al.Investigation on chloride threshold for reinforced concrete by a test method combining ANDT and ACMT[J].Construction and Building Materials,2019,214:158-168. [48] CCES 01—2004 (2005年修订版),混凝土结构耐久性设计与施工指南[S]. [49] THOMAS M,BAMFORTH P B.Modelling chloride diffusion in concrete:effect of fly ash and slag[J].Cement and Concrete Research,1999,29(4):487-495. [50] JTS 153—2015,水运工程结构耐久性设计标准[S].
点击查看大图
计量
- 文章访问数: 233
- HTML全文浏览量: 27
- PDF下载量: 12
- 被引次数: 0