FUNDAMENTAL RESEARCH ON CO2 CATALYTIC SYNTHESIS OF DERIVATIVE DIESEL
-
摘要: 为促进我国“双碳”政策的推行,拓展CO2的循环利用技术,开展了CO2合成柴油的实验探索,利用铁基催化剂,以CO2作为原料,探讨了CO2加氢合成衍生柴油的可行性研究。在科学验证CO2合成衍生柴油可行性的基础上,进一步考察了催化剂载体的酸碱性、催化剂组元Fe含量以及助剂添加对催化活性的影响。研究表明:CO2加氢的合成产物的主要组分及组分分布特点与商用柴油高度一致。以γ-Al2O3为载体负载铁基催化剂可有效促进CO2的逆水煤气反应和芬顿反应;作为催化剂助剂,金属元素K的添加对提高催化活性有较好的辅助作用。反应温度和压力是该反应的可控因子,其中,压力为决定因素,当压力>1.6 MPa时,反应才可以在250℃以上的温度域顺利发生。此外,载体的酸碱性、催化组元Fe及助剂K含量对合成产物的组分分布情况及与柴油的相似度也具有重要影响。Abstract: To promote the implementation of China's Dual Carbon Goals policy and expand the recycling technology of CO2, the experimental exploration of CO2 synthesis of diesel was carried out in this paper. Using iron-based catalyst and CO2 as the raw material, the feasibility study of CO2 hydrogenation synthesis of diesel was discussed. Based on verifying the feasibility of CO2 synthesis to derive diesel, we further investigated the effect of catalyst carrier's acidity and alkalinity, catalyst component Fe content and additive addition on catalytic activity. The research showed that the main components and component distribution characteristics of the synthesis products of CO2 hydrogenation were highly consistent with those of commercial diesel. The iron-based catalyst supported by γ-Al2O3 could effectively promote the reverse water gas reaction of CO2 and the Fenton reaction. As a catalyst promoter, the addition of potassium had a good auxiliary effect on improving the catalytic activity. The reaction temperature and pressure were the controllable factors of the reaction, and the pressure was the decisive factor. The study found that only when the pressure was higher than 1.6 MPa, the reaction smoothly occured in the temperature range above 250 ℃. In addition, the acidity and alkalinity of the carrier, the content of the catalytic component Fe and the auxiliary K had a crucial influence on the composition characteristics of the synthesized products and similarity with diesel.
-
Key words:
- CO2 hydrogenation /
- iron-based catalyst /
- carbon neutrality /
- hydrocarbon /
- derivative diesel
-
[1] 徐敏杰,朱明辉,陈天元,等.CO2 高值化利用:CO2 加氢制甲醇催化剂研究进展[J].化工进展,2020,40(2):565-576. [2] MARTIN O,MARTÍN A J,MONDELLI C,et al.Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J].Angewandte Chemie,2016,128(21):6369-6373. [3] JIANG K,ASHWORTH P,ZHANG S Y,et al.China’s carbon capture,utilization and storage (CCUS) policy:a critical review[J].Renewable and Sustainable Energy Reviews,2020,119:109601. [4] 何良年.二氧化碳化学:碳捕集,活化与资源化[J].科学通报,2021,66(7):713-715. [5] GAO S,LIN Y,JIAO X C,et al.Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel[J].Nature,2016,529(7584):68-71. [6] 苏豪,查永进,王眉山,等.CCS 与 CCUS 碳减排优劣势分析[J].环境工程,2015,33(增刊1):1044-1047,1053. [7] 薛博,刘勇,王沉,等.碳捕获,封存与利用技术及煤层封存 CO2 研究进展[J].化学世界,2020,61(4):294-297. [8] LIN J H,MA C P,WANG Q,et al.Enhanced low-temperature performance of CO2 methanation over mesoporous Ni/Al2O3-ZrO2 catalysts[J].Applied Catalysis B:Environmental,2019,243:262-272. [9] RONDA-LLORET M,ROTHENBERG G,SHIJU N R.A critical look at direct catalytic hydrogenation of carbon dioxide to olefins[J].ChemSusChem,2019,12(17):3896-3914. [10] WANG Y,GAO W Z,KAZUMI S,et al.Direct and oriented conversion of CO2 into value-added aromatics[J].Chemistry-A European Journal,2019,25(20):5149-5153. [11] LI H Z,REN S J,ZHANG S X,et al.The high-yield direct synthesis of dimethyl ether from CO2 and H2 in a dry reaction environment[J].Journal of Materials Chemistry A,2021,9(5):2678-2682. [12] 焦佳鹏,田海锋,何环环,等.CO/CO2 加氢制芳烃的研究进展[J].化工进展,2021,40(1):205-220. [13] 高鹏,崔勖,钟良枢,等.CO/CO2 加氢高选择性合成化学品和液体燃料[J].化工进展,2019,38(1):183-195. [14] 成康,张庆红,康金灿,等.二氧化碳直接制备高值化学品中的接力催化方法[J].中国科学:化学,2020,50(7):743-755. [15] 张超,张玉龙,朱明辉,等.CO2 高值化利用新途径:铁基催化剂 CO2 加氢制烯烃研究进展[J].化工进展,2021,40(2):577-593. [16] GUTTERØD E S,LAZZARINI A,FJERMESTAD T,et al.Hydrogenation of CO2 to methanol by Pt nanoparticles encapsulated in UiO-67:deciphering the role of the metal-organic framework[J].Journal of the American Chemical Society,2020,142(2):999-1009. [17] ZHANG X B,ZHANG A F,JIANG X,et al.Utilization of CO2 for aromatics production over ZnO/ZrO2-ZSM-5 tandem catalyst[J].Journal of CO2 Utilization,2019,29:140-145. [18] LI W,WANG K C,ZHAN G W,et al.Hydrogenation of CO2 to dimethyl ether over tandem catalysts based on biotemplated hierarchical ZSM-5 and Pd/ZnO[J].ACS Sustainable Chemistry & Engineering,2020,8(37):14058-14070. [19] RAFATI M,WANG L,SHAHBAZI A.Effect of silica and alumina promoters on co-precipitated Fe-Cu-K based catalysts for the enhancement of CO2 utilization during Fischer-Tropsch synthesis[J].Journal of CO2 Utilization,2015,12:34-42. [20] SAEIDI S,NAJARI S,FAZLOLLAHI F,et al.Mechanisms and kinetics of CO2 hydrogenation to value-added products:a detailed review on current status and future trends[J].Renewable and Sustainable Energy Reviews,2017,80:1292-1311. [21] MULEJA A A,GORIMBO J,MASUKU C M.Effect of co-feeding inorganic and organic molecules in the Fe and Co catalyzed Fischer-Tropsch synthesis:a review[J].Journal of CO2 Utilization,2015,12:34-42. [22] YANG X,ZHANG H,LIU T Y,et al.Preparation of iron carbides formed by iron oxalate carburization for Fischer-Tropsch synthesis[J].Catalysts,2019,9(4):347-360. [23] GNANAMANI M K,JACOBS G,HAMDEH H H,et al.Fischer-Tropsch synthesis:mössbauer investigation of iron containing catalysts for hydrogenation of carbon dioxide[J].Catalysis Today,2013,207:50-56. [24] GNANAMANI M K,SHAFER W D,SPARKS D E,et al.Fischer-Tropsch synthesis:effect of CO2 containing syngas over Pt promoted Co/γ-Al2O3 and K-promoted Fe catalysts[J].Catalysis Communications,2011,12(11):936-939. [25] 董子超,吴玉,张博风,等.新型 FeCo 双金属催化剂催化 CO2 加氢制低碳烯烃[J].化工学报,2021,72(5):2647-2656. [26] GUO L S,SUN J,GE Q J,et al.Recent advances in direct catalytic hydrogenation of carbon dioxide to valuable C2+ hydrocarbons[J].Journal of Materials Chemistry A,2018,6(46):23244-23262. [27] AMOYAL M,VIDRUK-NEHEMYA R,LANDAU M V,et al.Effect of potassium on the active phases of Fe catalysts for carbon dioxide conversion to liquid fuels through hydrogenation[J].Journal of Catalysis,2017,348:29-39. [28] CIMINO S,BOCCIA F,LISI L.Effect of alkali promoters (Li,Na,K) on the performance of Ru/Al2O3 catalysts for CO2 capture and hydrogenation to methane[J].Journal of CO2 Utilization,2020,37:195-203. [29] WANG Q,CHEN Y,LI Z H.Research progress of catalysis for low-carbon olefins synthesis through hydrogenation of CO2[J].Journal of Nanoscience and Nanotechnology,2019,19(6):3162-3172. [30] 马光远,徐艳飞,王捷,等.合成气直接法制取低碳烯烃铁基催化体系研究进展[J].化工进展,2018,37(3):992-1000. [31] ZHANG J L,FANG K G,ZHANG K,et al.Carbon dispersed iron-manganese catalyst for light olefin synthesis from CO hydrogenation[J].Korean Journal of Chemical Engineering,2009,26(3):890-894. [32] ZENG G T,QIU J,LI Z,et al.CO2 reduction to methanol on TiO2-passivated GaP photocatalysts[J].ACS Catalysis,2014,4(10):3512-3516. [33] RAZZAQ R,LI C,USMAN M,et al.A highly active and stable Co4N/γ-Al2O3 catalyst for CO and CO2 methanation to produce synthetic natural gas (SNG)[J].Chemical Engineering Journal,2015,262:1090-1098. [34] WANG Z Q,XU Z N,PENG S Y,et al.High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation[J].ACS Catalysis,2015,5(7):4255-4259. [35] JOHNSON G R,BELL A T.Role of ZrO2 in promoting the activity and selectivity of Co-Based Fischer-Tropsch synthesis catalysts[J].ACS Catalysis,2016,6(1):100-114. [36] LI Z L,WANG J J,QU Y Z,et al.Highly selective conversion of carbon dioxide to lower olefins[J].ACS Catalysis,2017,7(12):8544-8548. [37] WANG S W,WU T J,LIN J,et al.Iron-potassium on single-walled carbon nanotubes as efficient catalyst for CO2 hydrogenation to heavy olefins[J].ACS Catalysis,2020,10(11):6389-6401.
点击查看大图
计量
- 文章访问数: 643
- HTML全文浏览量: 81
- PDF下载量: 67
- 被引次数: 0