中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO2催化合成衍生柴油的基础研究

李函霏 吴畏 白露露

李函霏, 吴畏, 白露露. CO2催化合成衍生柴油的基础研究[J]. 环境工程, 2022, 40(9): 1-8. doi: 10.13205/j.hjgc.202209001
引用本文: 李函霏, 吴畏, 白露露. CO2催化合成衍生柴油的基础研究[J]. 环境工程, 2022, 40(9): 1-8. doi: 10.13205/j.hjgc.202209001
LI Han-fei, WU Wei, BAI Lu-lu. FUNDAMENTAL RESEARCH ON CO2 CATALYTIC SYNTHESIS OF DERIVATIVE DIESEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 1-8. doi: 10.13205/j.hjgc.202209001
Citation: LI Han-fei, WU Wei, BAI Lu-lu. FUNDAMENTAL RESEARCH ON CO2 CATALYTIC SYNTHESIS OF DERIVATIVE DIESEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 1-8. doi: 10.13205/j.hjgc.202209001

CO2催化合成衍生柴油的基础研究

doi: 10.13205/j.hjgc.202209001
基金项目: 

国家自然科学基金“生活垃圾催化气化合成衍生燃油机理及二次污染发生特性研究”(51478092)

详细信息
    作者简介:

    李函霏(1993-),女,硕士,主要研究方向为固体废弃物处理与资源化技术。672048999@qq.com

    通讯作者:

    吴畏(1967-),男,副教授,主要研究方向为固体废弃物处理与资源化技术。wuwei@mail.neu.edu.cn

FUNDAMENTAL RESEARCH ON CO2 CATALYTIC SYNTHESIS OF DERIVATIVE DIESEL

  • 摘要: 为促进我国“双碳”政策的推行,拓展CO2的循环利用技术,开展了CO2合成柴油的实验探索,利用铁基催化剂,以CO2作为原料,探讨了CO2加氢合成衍生柴油的可行性研究。在科学验证CO2合成衍生柴油可行性的基础上,进一步考察了催化剂载体的酸碱性、催化剂组元Fe含量以及助剂添加对催化活性的影响。研究表明:CO2加氢的合成产物的主要组分及组分分布特点与商用柴油高度一致。以γ-Al2O3为载体负载铁基催化剂可有效促进CO2的逆水煤气反应和芬顿反应;作为催化剂助剂,金属元素K的添加对提高催化活性有较好的辅助作用。反应温度和压力是该反应的可控因子,其中,压力为决定因素,当压力>1.6 MPa时,反应才可以在250℃以上的温度域顺利发生。此外,载体的酸碱性、催化组元Fe及助剂K含量对合成产物的组分分布情况及与柴油的相似度也具有重要影响。
  • [1] 徐敏杰,朱明辉,陈天元,等.CO2 高值化利用:CO2 加氢制甲醇催化剂研究进展[J].化工进展,2020,40(2):565-576.
    [2] MARTIN O,MARTÍN A J,MONDELLI C,et al.Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J].Angewandte Chemie,2016,128(21):6369-6373.
    [3] JIANG K,ASHWORTH P,ZHANG S Y,et al.China’s carbon capture,utilization and storage (CCUS) policy:a critical review[J].Renewable and Sustainable Energy Reviews,2020,119:109601.
    [4] 何良年.二氧化碳化学:碳捕集,活化与资源化[J].科学通报,2021,66(7):713-715.
    [5] GAO S,LIN Y,JIAO X C,et al.Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel[J].Nature,2016,529(7584):68-71.
    [6] 苏豪,查永进,王眉山,等.CCS 与 CCUS 碳减排优劣势分析[J].环境工程,2015,33(增刊1):1044-1047,1053.
    [7] 薛博,刘勇,王沉,等.碳捕获,封存与利用技术及煤层封存 CO2 研究进展[J].化学世界,2020,61(4):294-297.
    [8] LIN J H,MA C P,WANG Q,et al.Enhanced low-temperature performance of CO2 methanation over mesoporous Ni/Al2O3-ZrO2 catalysts[J].Applied Catalysis B:Environmental,2019,243:262-272.
    [9] RONDA-LLORET M,ROTHENBERG G,SHIJU N R.A critical look at direct catalytic hydrogenation of carbon dioxide to olefins[J].ChemSusChem,2019,12(17):3896-3914.
    [10] WANG Y,GAO W Z,KAZUMI S,et al.Direct and oriented conversion of CO2 into value-added aromatics[J].Chemistry-A European Journal,2019,25(20):5149-5153.
    [11] LI H Z,REN S J,ZHANG S X,et al.The high-yield direct synthesis of dimethyl ether from CO2 and H2 in a dry reaction environment[J].Journal of Materials Chemistry A,2021,9(5):2678-2682.
    [12] 焦佳鹏,田海锋,何环环,等.CO/CO2 加氢制芳烃的研究进展[J].化工进展,2021,40(1):205-220.
    [13] 高鹏,崔勖,钟良枢,等.CO/CO2 加氢高选择性合成化学品和液体燃料[J].化工进展,2019,38(1):183-195.
    [14] 成康,张庆红,康金灿,等.二氧化碳直接制备高值化学品中的接力催化方法[J].中国科学:化学,2020,50(7):743-755.
    [15] 张超,张玉龙,朱明辉,等.CO2 高值化利用新途径:铁基催化剂 CO2 加氢制烯烃研究进展[J].化工进展,2021,40(2):577-593.
    [16] GUTTERØD E S,LAZZARINI A,FJERMESTAD T,et al.Hydrogenation of CO2 to methanol by Pt nanoparticles encapsulated in UiO-67:deciphering the role of the metal-organic framework[J].Journal of the American Chemical Society,2020,142(2):999-1009.
    [17] ZHANG X B,ZHANG A F,JIANG X,et al.Utilization of CO2 for aromatics production over ZnO/ZrO2-ZSM-5 tandem catalyst[J].Journal of CO2 Utilization,2019,29:140-145.
    [18] LI W,WANG K C,ZHAN G W,et al.Hydrogenation of CO2 to dimethyl ether over tandem catalysts based on biotemplated hierarchical ZSM-5 and Pd/ZnO[J].ACS Sustainable Chemistry & Engineering,2020,8(37):14058-14070.
    [19] RAFATI M,WANG L,SHAHBAZI A.Effect of silica and alumina promoters on co-precipitated Fe-Cu-K based catalysts for the enhancement of CO2 utilization during Fischer-Tropsch synthesis[J].Journal of CO2 Utilization,2015,12:34-42.
    [20] SAEIDI S,NAJARI S,FAZLOLLAHI F,et al.Mechanisms and kinetics of CO2 hydrogenation to value-added products:a detailed review on current status and future trends[J].Renewable and Sustainable Energy Reviews,2017,80:1292-1311.
    [21] MULEJA A A,GORIMBO J,MASUKU C M.Effect of co-feeding inorganic and organic molecules in the Fe and Co catalyzed Fischer-Tropsch synthesis:a review[J].Journal of CO2 Utilization,2015,12:34-42.
    [22] YANG X,ZHANG H,LIU T Y,et al.Preparation of iron carbides formed by iron oxalate carburization for Fischer-Tropsch synthesis[J].Catalysts,2019,9(4):347-360.
    [23] GNANAMANI M K,JACOBS G,HAMDEH H H,et al.Fischer-Tropsch synthesis:mössbauer investigation of iron containing catalysts for hydrogenation of carbon dioxide[J].Catalysis Today,2013,207:50-56.
    [24] GNANAMANI M K,SHAFER W D,SPARKS D E,et al.Fischer-Tropsch synthesis:effect of CO2 containing syngas over Pt promoted Co/γ-Al2O3 and K-promoted Fe catalysts[J].Catalysis Communications,2011,12(11):936-939.
    [25] 董子超,吴玉,张博风,等.新型 FeCo 双金属催化剂催化 CO2 加氢制低碳烯烃[J].化工学报,2021,72(5):2647-2656.
    [26] GUO L S,SUN J,GE Q J,et al.Recent advances in direct catalytic hydrogenation of carbon dioxide to valuable C2+ hydrocarbons[J].Journal of Materials Chemistry A,2018,6(46):23244-23262.
    [27] AMOYAL M,VIDRUK-NEHEMYA R,LANDAU M V,et al.Effect of potassium on the active phases of Fe catalysts for carbon dioxide conversion to liquid fuels through hydrogenation[J].Journal of Catalysis,2017,348:29-39.
    [28] CIMINO S,BOCCIA F,LISI L.Effect of alkali promoters (Li,Na,K) on the performance of Ru/Al2O3 catalysts for CO2 capture and hydrogenation to methane[J].Journal of CO2 Utilization,2020,37:195-203.
    [29] WANG Q,CHEN Y,LI Z H.Research progress of catalysis for low-carbon olefins synthesis through hydrogenation of CO2[J].Journal of Nanoscience and Nanotechnology,2019,19(6):3162-3172.
    [30] 马光远,徐艳飞,王捷,等.合成气直接法制取低碳烯烃铁基催化体系研究进展[J].化工进展,2018,37(3):992-1000.
    [31] ZHANG J L,FANG K G,ZHANG K,et al.Carbon dispersed iron-manganese catalyst for light olefin synthesis from CO hydrogenation[J].Korean Journal of Chemical Engineering,2009,26(3):890-894.
    [32] ZENG G T,QIU J,LI Z,et al.CO2 reduction to methanol on TiO2-passivated GaP photocatalysts[J].ACS Catalysis,2014,4(10):3512-3516.
    [33] RAZZAQ R,LI C,USMAN M,et al.A highly active and stable Co4N/γ-Al2O3 catalyst for CO and CO2 methanation to produce synthetic natural gas (SNG)[J].Chemical Engineering Journal,2015,262:1090-1098.
    [34] WANG Z Q,XU Z N,PENG S Y,et al.High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation[J].ACS Catalysis,2015,5(7):4255-4259.
    [35] JOHNSON G R,BELL A T.Role of ZrO2 in promoting the activity and selectivity of Co-Based Fischer-Tropsch synthesis catalysts[J].ACS Catalysis,2016,6(1):100-114.
    [36] LI Z L,WANG J J,QU Y Z,et al.Highly selective conversion of carbon dioxide to lower olefins[J].ACS Catalysis,2017,7(12):8544-8548.
    [37] WANG S W,WU T J,LIN J,et al.Iron-potassium on single-walled carbon nanotubes as efficient catalyst for CO2 hydrogenation to heavy olefins[J].ACS Catalysis,2020,10(11):6389-6401.
  • 加载中
计量
  • 文章访问数:  643
  • HTML全文浏览量:  81
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-16
  • 网络出版日期:  2022-11-09

目录

    /

    返回文章
    返回