中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CEEMD-BiGRU模型的徐州市大气污染物浓度预测

吴子伯 崔云霞 曹炜琦 彭欣 赵修齐治蓁

吴子伯, 崔云霞, 曹炜琦, 彭欣, 赵修齐治蓁. 基于CEEMD-BiGRU模型的徐州市大气污染物浓度预测[J]. 环境工程, 2022, 40(9): 9-18. doi: 10.13205/j.hjgc.202209002
引用本文: 吴子伯, 崔云霞, 曹炜琦, 彭欣, 赵修齐治蓁. 基于CEEMD-BiGRU模型的徐州市大气污染物浓度预测[J]. 环境工程, 2022, 40(9): 9-18. doi: 10.13205/j.hjgc.202209002
WU Zi-bo, CUI Yun-xia, CAO Wei-qi, PENG Xin, ZHAO Xiu-qi-zhi-zhen. PREDICTION OF AIR POLLUTANT CONCENTRATIONS IN XUZHOU BASED ON CEEMD-BiGRU MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 9-18. doi: 10.13205/j.hjgc.202209002
Citation: WU Zi-bo, CUI Yun-xia, CAO Wei-qi, PENG Xin, ZHAO Xiu-qi-zhi-zhen. PREDICTION OF AIR POLLUTANT CONCENTRATIONS IN XUZHOU BASED ON CEEMD-BiGRU MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 9-18. doi: 10.13205/j.hjgc.202209002

基于CEEMD-BiGRU模型的徐州市大气污染物浓度预测

doi: 10.13205/j.hjgc.202209002
详细信息
    作者简介:

    吴子伯(1996-),男,硕士,主要研究方向为环境规划与管理。374859325@qq.com

    通讯作者:

    崔云霞(1971-),教授,主要研究方向为环境规划与管理。09379@njnu.edu.cn

PREDICTION OF AIR POLLUTANT CONCENTRATIONS IN XUZHOU BASED ON CEEMD-BiGRU MODEL

  • 摘要: 目前大气污染物对于地区经济以及人体健康的影响不容忽视。选取徐州市2016-01-01—2021-01-24大气污染物和气象要素数据,针对大气污染物浓度波动性强等特点,运用互补集成经验模态分解(CEEMD)将污染物数据分解为本征模态分量,提取出原始数据的各项特征,再对分解出的各本征模态分量构建双向门控循环单元模型(BiGRU),通过双向循环训练,学习各分量的特征趋势并获得最优训练参数,将输出结果重构,得到最终的预测值。结果表明:与BiGRU、BP模型相比,CEEMD-BiGRU模型预测各项大气污染物的平均绝对误差(MAE)、均方根误差(RMSE)和平均绝对百分比误差(MAPE)分别下降15%、20%和2百分点以上,预测精度有较大提升。在此基础上,利用CEEMD-BiGRU模型预测后一时间段残差,以修正原预测值,得到大气污染物预测区间上界,进一步扩展模型的适用性。
  • [1] 毕谆,周红刚.PM2.5引起的肺部疾病及其作用机制的研究进展[J].环境工程,2016,34(增刊1):496-499.
    [2] 谢元博,陈娟,李巍.雾霾重污染期间北京居民对高浓度PM2.5持续暴露健康风险及其损害价值评估[J].环境科学,2014,35(1):1-8.
    [3] LI X L,WANG Y Q,ZHANG Y,et al.Response of soil chemical properties and enzyme activity of four species i-n the Three Gorges Reservoir area to simulated acid rain[J].Ecotoxicology and Environmental Safety,2021,208:111457.
    [4] BARRECA A I,NEIDELL M,SANDERS N J.Long-run pollution exposure and mortality:evidence from the acid rain program[J].Journal of Public Economics,2021,200:104440.
    [5] LI M M,DONG H,WANG B G,et al.Association between ambient ozone pollution and mortality from a s-pectrum of causes in Guangzhou,China[J].Science of the Total Environment,2021,754:142110.
    [6] THONGTHAMMACHART T,ARAKI S,SHIMADERA H,et al.An integrated model combining random forests and WRF/C-MAQ model for high accuracy spatiotemporal PM2.5 predictions in the Kansai region of Japan[J].Atmospheric Environment,2021,262:118620.
    [7] CHARU S,SANJEEV K S,PRAKASH C,et al.Simulation of an extreme dust episode using WRF-CHEM based on optimal ensemble approach[J].Atmospheric Research,2021,249:105296.
    [8] 周广强,高伟,谷怡萱,等.WRF-Chem模式降水对上海PM2.5预报的影响[J].环境科学学报,2017,37(12):4476-4482.
    [9] WANG X H,WANG B Z.Research on prediction of environmental aerosol and PM2.5 based on artificial neural network[J].Neural Computing and Applications,2019,31(12):8217-8227.
    [10] CHAUDHURI S,DUTTA D.Mann-Kendall trend of pollutants,temperature and humidity over an urban stat-ion of India with forecast verification using different ARIMA models[J].Environmental Monitoring and Assessment,2014,186(8):4719-4742.
    [11] TAO Q,LIU F,LI Y,et al.Air pollution forecasting using a deep learning model based on 1D convnetsand bidirectional GRU[J].IEEE Access,2019,7:76690-76698.
    [12] FENG R,ZHENG H J,GAO H,et al.Recurrent neural network and random forest for analysis and accurate forecast of atmospheric pollutants:a case study in Hangzhou,China[J].Journal of Cleaner Production,2019,231:1005-1015.
    [13] 成华义.GA-PSO-BP神经网络在大气污染物浓度预测中的应用研究[D].武汉:华中科技大学,2014.
    [14] 郑霞,胡东滨,李权.基于小波分解和SVM的大气污染物浓度预测模型研究[J].环境科学学报,2020,40(8):2962-2969.
    [15] 秦喜文,王强进,王新民,等.基于VMD和LSTM方法的北京市PM2.5短期预测[J].吉林大学学报(地球科学版),2022,52(1):214-221.
    [16] 赵彦明.基于时空相关性的LSTM算法及PM2.5浓度预测应用[J].计算机应用与软件,2021,38(6):249-255

    ,323.
    [17] SCHUSTER M,PALIWAL K K.Bidirectional recurrent neural networks[J].IEEE transactions on Signal Processing,1997,45(11):2673-2681.
    [18] CAO X K,REN N,TIAN G L,et al.A three-dimensional prediction method of dissolved oxygen in pond culture based on Attention-GRU-GBRT[J].Computers and Electronics in Agriculture,2021,181:105955.
    [19] LIANG R,CHANG X T,JIA P T,et al.Mine gas concentration forecasting model based on an optimized BiGRU network[J].ACS Omega,2020,5(44):28579-28586.
    [20] KONSTANTIN Y V,RUSSELL R D,NICKOLAY A K,et al.The net decay time of anomalies in concentrations of atmospheric pollutants[J].Atmospheric Environment,2017,160:19-26.
    [21] GU J,PENG Y X.An improved complementary ensemble empirical mode decomposition method and its application in rolling bearing fault diagnosis[J].Digital Signal Processing,2021,113:103050.
    [22] 陈煜升,张宇静,赵天良,等.近5年徐州市大气污染变化及相关气象作用[J].环境科学与技术,2019,42(增刊1):152-158.
    [23] ABDOLLAH B,OSMAN E O,DEVIN K H.Structural system identification based on variational mode decomposition[J].Journal of Sound and Vibration,2018,417:182-197.
    [24] THIRUMALAISAMY M R,ANSELL P J.Fast and adaptive empirical mode decomposition for multidimensional,multivariate signals[J].IEEE Signal Processing Letters,2018,25(10):1550-1554.
    [25] REZAEI H,FAALJOU H,MANSOURFAR G.Stock price prediction using deep learning and frequency decomposition[J].Expert Systems with Applications,2021,169:114332.
    [26] CHEN J X,FENG X,JIANG L,et al.State of charge estimation of lithium-ion battery using denoising autoe-noder and gated recurrent unit recurrent neural network[J].Energy,2021,227:120451.
    [27] LONG D K,ZHANG R C,MAO Y Y.Prototypical recurrent unit[J].Neurocomputing,2018,311:146-154.
    [28] LI P,WANG S W,JI H,et al.Air Quality index prediction based on an adaptive dynamic particle swarm optimized bidirectional gated recurrent neural network-China region[J].Advanced Theory and Simulations,2021,4(12):2100220-1-2100220-14.
    [29] NITISH S,GEOFFREY E H,ALEX K,et al.Dropout:a simple way to prevent neural networks from overfitting[J].Journal of Machine Learning Research,2014,15(1):1929-1958.
    [30] MAHMOOD D,MOHAMMAD H S.EclatDS:an efficient sliding window based frequent pattern miningmethod for data streams[J].Intelligent Data Analysis,2011,15(4):571-587.
    [31] SHRINIVAS C,PETER J,SANDER W.Fast nonlinear fourier transform algorithms using higher order exponential integrators[J].IEEE Access,2019,7:145161-145176.
    [32] DIEDERIK P K,JIMMY B.Adam:a method for stochastic optimization[J].Computer Science,2014.
  • 加载中
计量
  • 文章访问数:  346
  • HTML全文浏览量:  53
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-21
  • 网络出版日期:  2022-11-09

目录

    /

    返回文章
    返回