TREATMENT EFFICIENCY OF HETEROGENEOUS FENTON ON GROUNDWATER PUMPED FROM ORGANOPHOSPHORUS PESTICIDE CONTAMINATED SITES AND ITS INFLUENCE FACTORS
-
摘要: 比较了不同非均相Fenton催化剂处理高浓度有机磷农药污染场地抽出地下水的COD、TP去除率以及污泥产率的差异,探究了H2O2投加量、非均相催化剂装填量、pH对反应效能的影响,并利用扫描电子显微镜(SEM),X射线能谱(EDS)等技术,分析了反应前后非均相催化剂表面结构特征与成分组成。结果表明:Fe2O3/Al2O3非均相催化剂具有较高的比表面积与负载Fe含量,反应后材料表面有Fe元素沉积。以Fe2O3/Al2O3、Al2O3、Fe2O3/SiO2-Al2O3作为催化剂的非均相Fenton反应,其COD、TP去除率分别可达到84.72%、74.10%、75.98%与88.48%、82.80%、85.83%,均高于无固体催化剂的均相Fenton反应。ρ(H2O2)/ρ(COD)=0.5~2.0时,COD与TP去除率随H2O2投加量的增加而提升,并与非均相催化剂装填量呈正相关。同时,非均相催化剂的投加可显著降低污泥产率,扩大反应体系有效pH范围。Abstract: The differences in COD, TP removal rate and sludge yield in different heterogeneous Fenton catalysts for treating high concentration organophosphorus groundwater pumped from pesticide-contaminated sites were compared, and the influences of H2O2 dosage, heterogeneous catalyst loading and pH on the reaction efficiency were investigated. The surface structure and composition of heterogeneous catalysts before and after the reaction were analyzed using scanning electron microscope(SEM) and X-ray energy spectrum(EDS). The results indicated that Fe2O3/Al2O3 heterogeneous catalyst had a higher specific surface area and Fe content at load, and Fe was deposited on the surface of the material after the reaction. In heterogeneous Fenton reaction with Fe2O3/Al2O3, Al2O3 and Fe2O3/SiO2-Al2O3 as catalysts, the removal rates of COD and TP can reach 84.72%, 74.10%, 75.98% and 88.48%, 82.80%, 85.83%, respectively. Higher than homogeneous Fenton reaction without solid catalyst. In the range of ρ(H2O2)/ρ(COD)=0.5~2.0, the removal rates of COD and TP significantly increased with the increase of H2O2 dosage, and the removal rates of COD and TP were in direct proportion to the loading amount of heterogeneous catalysts. At the same time, the addition of heterogeneous catalyst can significantly reduce the sludge yield and expand the effective pH range of the reaction system.
-
[1] 裴亮,张体彬,赵楠,等.有机磷农药降解方法及应用研究新进展[J].环境工程,2011,29(增刊1):273-277,174. [2] 张春红,白艳红,陈杰瑢,等.有机磷农药废水降解方法研究新进展[J].水处理技术,2010,36(1):1-5,9. [3] 刘路爵,孙浩,张启凯,等.高级氧化法处理有机磷农药废水的研究进展[J].广州化工,2019,47(21):14-16. [4] 王海平,姜亚敏.农药类污染场地地下水联合修复技术研究[J].应用化工,2019,48(2):386-389. [5] 李姗姗,刘峻峰,冯玉杰.高级氧化法处理农药废水研究进展[J].工业水处理,2015,35(8):6-10. [6] 李荣喜,杨春平.Fenton反应处理三唑磷农药废水[J].工业水处理,2009,29(3):65-69. [7] 郭全全.Fenton催化氧化处理农药废水研究[D].西安:长安大学,2011. [8] 丁海英,陈强.基于非均相Fenton反应的水处理污染物降解[J].当代化工,2020,49(10):2129-2132,2137. [9] 李章良,张国鑫,潘文斌.Cu/Zn非均相Fenton催化剂的制备及其对环丙沙星的降解效果[J].环境工程学报,2021,15(3):806-816. [10] 郭长征.多相芬顿法催化降解有机污染物进展[J].中国环境管理干部学院学报,2015,25(4):56-59. [11] 滕洁.非均相Fenton反应的研究进展[J].资源节约与环保,2016(10):46-47. [12] LIOU R M,CHEN S H,HUNG M Y,et al.Fe (Ⅲ) supported on resin as effective catalyst for the heterogeneous oxidation of phenol in aqueous solution[J].Chemosphere,2005,59(1):117-125. [13] 陈芳艳,倪建玲,唐玉斌.非均相UV/Fenton氧化法降解水中六氯苯的研究[J].环境工程学报,2008,2(6):765-770. [14] 吉飞,李朝林,张家欢,等.LiFePO4非均相Fenton法处理亚甲基蓝染料的研究[J].环境工程学报,2012,6(1):232-236. [15] DENG J H,JIANG J Y,ZHANG Y Y,et al.FeVO4 as a highly active heterogeneous Fenton-like catalyst towards the degradation of Orange Ⅱ[J].Applied Catalysis B,Environmental,2008,84(3):468-473. [16] LUO W,ZHU L H,WANG N,et al.Efficient removal of organic pollutants with magnetic Nanoscaled BiFeO3 as a reusable heterogeneous fenton-like catalyst[J].Environmental Science & Technology,2010,44(5):1786-1791. [17] PHAM L T,LEE C H,DOYLE F M,et al.A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values[J].Environmental Science & Technology,2009,43(23):8930-8935. [18] 王彦斌,赵红颖,赵国华,等.基于铁化合物的异相Fenton催化氧化技术[J].化学进展,2013,25(8):1246-1259. [19] CHEN W H,XIONG J H,TENG X,et al.A novel heterogeneous Co(Ⅱ)-Fenton-like catalyst for efficient photodegradation by visible light over extended pH[J].Science China(Chemistry),2020,63(12):1825-1836. [20] 史豪杰,买文宁,姚萌,等.粉煤灰深度处理制药废水实验研究[J].环境工程,2013,31(1):1-4. [21] 张泽宇,鲁智礼,张堯,等.多相芬顿催化剂表面生物膜对去除双酚A的影响及其微生物群落表征[J].环境工程学报,2020,14(12):3372-3380. [22] 李海松,闫阳,买文宁,等.铁碳微电解-H2O2耦合联用的类Fenton法处理制浆造纸废水[J].环境化学,2013,32(12):2302-2306. [23] 李海松,毛圣捷,王敏,等.非均相Fenton催化剂深度处理维生素C废水的试验[J].环境化学,2014,33(8):1391-1395. [24] 陈国华,欧阳秀欢,张永.Fenton试剂对久效磷的降解实验研究[J].中国海洋大学学报(自然科学版),2006,36(4):655-659. [25] 国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002. [26] 熊鑫.Ni-Mo加氢脱硫催化剂TiO2/γ-Al2O3复合载体制备及其性能[D].武汉:武汉理工大学,2015. [27] 颜金利,汪晓军,黎玉香,等.负载氧化铁石英砂用于Fenton-流化床体系处理印染废水的研究[J].水处理技术,2012,38(2):76-78,83. [28] LI Z,SHENG J,WANG Y,et al.Enhanced photocatalytic activity and stability of alumina supported hematite for azo-dye degradation in aerated aqueous suspension[J].Journal of Hazardous Materials,2013,254/255:18-25. [29] 李肖琳,谢陈鑫,秦微,等.有机磷水处理药剂生产废水处理技术的研究[J].工业水处理,2014,34(6):39-42. [30] 吴梦,张大超,徐师,等.废水除磷工艺技术研究进展[J].有色金属科学与工程,2019,10(2):97-103. [31] GOGOI A,NAVGIRE M,SARMA K C,et al.Highly efficient heterogeneous Fenton activities of magnetic β-cyclodextrin (Fe) framework for Eriochrome black T degradation[J].Materials Chemistry and Physics,2019,231:233-243. [32] 郭莹,陈鸿汉,张焕祯,等.强化3级Fenton氧化结合石灰乳中和混凝处理苯系染料中间体废水[J].环境工程学报,2017,11(11):5785-5793. [33] 杨波,张永丽.非均相芬顿体系协同去除复合双污染物:化学转化,pH影响和机理分析[J].化学学报,2019,77(10):1017-1023.
点击查看大图
计量
- 文章访问数: 122
- HTML全文浏览量: 12
- PDF下载量: 7
- 被引次数: 0