POLLUTION CHARACTERISTICS AND ECOLOGICAL RISK ASSESSMENT OF HEAVY METALS IN COVERING SOIL SYSTEM OF A COAL GANGUE HILL
-
摘要: 长期堆积的煤矸石会在雨水淋滤、地下水浸泡下释放重金属元素,随着水流向周边土壤扩散的同时,也会在土壤毛细作用及植物根系活动作用下向上层覆土迁移,对土壤质量产生影响。以宁夏宁东某矿矸石山为研究对象,分析矸石山不同深度覆土及周边0~200 m土壤环境中Cu、Zn、Pb、Cr、Cd、As、Mn、Ni元素的空间分布特征,探究土壤环境质量现状,并综合评估土壤生态风险。研究表明:Cr是研究区的主要污染因子,矸石山覆土有86.36%的采样点位Cr含量超过原土,矸石山周边表层、深层土壤分别有100%、50%的采样点位Cr含量超过对照点土壤背景值;煤矸石中有毒重金属元素向覆土有一定的迁移性,且与煤矸石层接触的土壤中重金属元素富集明显;煤矸石粉尘扩散是周边土壤中重金属元素富集的主要途径,其显著影响范围在矸石山10 m内;矸石山周边土壤潜在生态危害指数(RI)为40.80~63.31,污染程度均为轻微,矸石山覆土潜在生态危害指数(RI)为44.83~70.54,仅有1个点位污染程度达到中等。Abstract: Soil covering has been used to isolate coal gangue from oxygen, and it can rapidly remediate coal gangue waste. However, the coal gangue which has long-term piled can release heavy metals under the rain leaching and groundwater soaking, which will diffuse to the surrounding soil with water flow. Meanwhile, the released heavy metals will also migrate to the upper covering soil under the action of soil capillarity and plant root activity, therefore impact soil quality. We chose a coal gangue hill in Ningdong, Ningxia as the research object, and analyzed the spatial distribution characteristics of Cu, Zn, Pb, Cr, Cd, As, Mn, and Ni in the covering soil at different depths of the coal gangue hill and the surrounding soil within 0~200 m distance from the coal gangue hill. We also explored the status quo of soil environmental quality, and comprehensively assessed the potential ecological risks of soils. The results showed that Cr was the main pollutant in the study area. Cr content in the covering soils was higher than the control in 86.36% of the sampling sites, and Cr content was higher than that of the soil background value of the control point in 100% and 50% of the sampling sites of the surrounding surface soil and deep soil, respectively. Toxic heavy metals in coal gangue migrated to the covering soil to a certain extent, and the heavy metals in the soil directly contacting with coal gangue layer were enriched obviously. The coal gangue dust diffusion is the main way to enrich heavy metals in the surrounding soil, and its significant influence range was within 10 m of the gangue hill. The potential ecological risk index(RI) of soils around the coal gangue hill ranged from 40.80~63.31, indicating that the pollution extent was all slight. RI value of the covering soil was between 44.83~70.54, and the pollution extent was of only one sampling point reached the medium level.
-
Key words:
- gangue hill /
- surrounding soil /
- covering soil /
- heavy metal elements /
- potential ecological hazards
-
[1] 党倩楠,王进鑫,姚丽霞,等.干旱荒漠区煤矸石山覆土区土壤水分物理性质的空间异质性[J].应用生态学报,2021,32(1):281-288. [2] HUA C Y,ZHOU G Z,YIN X,et al.Assessment of heavy metal in coal gangue:distribution,leaching characteristic and potential ecological risk[J].Environmental Science and Pollution Research International,2018,25(32):32321-32331. [3] JING X,LU W X,ZHAO H Q,et al.Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump[J].Natural Hazards and Earth System Science,2014,14(6):1599-1610. [4] LU X W,XUE X Y,ZHOU X.Enrichment condition and security risk assessment of heavy metals in soil-crops system around the gangue dumps[J].IOP Conference Series:Earth and Environmental Science,2018,170(5). [5] LIU Y,SONG J F,XUE B,et al.Leaching behavior and potential environmental effects of trace elements in coal gangue of an open-cast coal mine area,Inner Mongolia,China[J].Minerals,2016,6(2):50. [6] 王世林,牛文静,张攀,等.煤矸石的研究现状与应用[J].江西化工,2019(5):69-71. [7] WANG S B,LUO K L,WANG X,et al.Estimate of sulfur,arsenic,mercury,fluorine emissions due to spontaneous combustion of coal gangue:an important part of Chinese emission inventories[J].Environmental Pollution,2016,209:107-113. [8] 赵玉林,肖昕.煤矸石充填复垦区域土壤重金属空间分布特征[J].中国环保产业,2016(11):69-72. [9] 陈孝杨,刘鑫尧,严家平.煤矸充填复垦土壤可溶性镉的分布特征与运移模拟[J].农业环境科学学报,2012,31(9):1734-1738. [10] 郭慧霞,杨建,王心义,等.焦作矿区土壤对煤矸石中污染组分的吸附解吸试验[J].农业环境科学学报,2008,27(1):194-199. [11] 高宇,杜亮亮,海龙.宁东矿区土壤重金属元素垂直分布特征研究[J].世界有色金属,2017(18):264-265. [12] 邵群.新庄孜矿塌陷区煤矸石中重金属迁移对覆土影响[J].煤田地质与勘探,2007(6):34-36. [13] 陈健.土壤pH测试方法及应用分析[J].化工设计通讯,2020,46(4):230,260. [14] 中国科学院南京土壤研究所.土壤理化分析[M].上海科学技术出版社,1978. [15] 黄春兰.土壤有机质的分光光度测定[J].热带作物研究,1990(4):51-52. [16] 王圣瑞.湖泊沉积物-水界面过程[M].北京:科学出版社,2013. [17] NALAN K,DENGİZ O.Assessment of potential ecological risk index based on heavy metal elements for organic farming in micro catchments under humid ecological condition[J].Eurasian Journal of Soil Science,2020,9(3):194-201. [18] 熊鸿斌,陈神剑.基于Monte Carlo-Hakanson模型的土壤重金属生态风险评价研究[J].农业环境科学学报,2020,39(8):1706-1712. [19] DOU L,LI W P,SUN Y Q,et al.Release activity and potential ecological risk assessment of heavy metals in coal gangue of Hancheng,China[J].International Journal of Energy and Power Engineering,2015,4(5):304-310. [20] 徐争启,倪师军,庹先国,等.潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术,2008,31(2):112-115. [21] HAKANSON L.An ecological risk index for aquatic pollution control:a sedimentological approach[J].Water Research,1980,14(8):975-1001. [22] 吕占禄,张金良,邹天森,等.燃煤电厂周边土壤重金属污染特征及评价[J].环境工程技术学报,2019,9(6):720-731. [23] 李一蒙,马建华,刘德新,等.开封城市土壤重金属污染及潜在生态风险评价[J].环境科学,2015,36(3):1037-1044. [24] 范明毅,杨皓,黄先飞,等.典型山区燃煤型电厂周边土壤重金属形态特征及污染评价[J].中国环境科学,2016,36(8):2425-2436. [25] 成杭新,李括,李敏,等.中国城市土壤化学元素的背景值与基准值[J].地学前缘,2014,21(3):265-306. [26] 何灵芝,张熙,徐代刚,等.万山区耕地土壤养分含量分布[J].农技服务,2020,37(6):9-11. [27] XU S S,ZHAO Q H,QIN C Z,et al.Effects of vegetation restoration on accumulation and translocation of heavy metals in post-mining areas[J].Land Degradation & Development,2021,32(5):2000-2012. [28] 王新,贾永锋.紫花苜蓿对土壤重金属富集及污染修复的潜力[J].土壤通报,2009,40(4):932-935. [29] 姜娜,杨京民,GAHONZIRE B,等.牧草在重金属污染土壤治理中的修复和综合利用潜力[J].生态与农村环境学报,2021,37(5):545-554. [30] YAO D X,MENG J,ZHANG Z G.Heavy metal pollution and potential ecological risk in reclaimed soils in Huainan mining area[J].Journal of Coal Science and Engineering (China),2010,16(3):316-319. [31] 张卫国,杨帆,张池,等.陕南地区石煤矸石中主要伴生元素迁移规律研究[J].煤炭科学技术,2021,49(3):189-193. [32] 杨建,陈家军,王心义.煤矸石堆周围土壤重金属污染空间分布及评价[J].农业环境科学学报,2008,27(3):873-878. [33] 魏忠义,陆亮,王秋兵.抚顺西露天矿大型煤矸石山及其周边土壤重金属污染研究[J].土壤通报,2008,39(4):946-949. [34] 杨娅,季宏兵.新化矿区煤矸石中微量元素赋存形态及浸出特征[J].地球与环境,2016,44(1):36-46. [35] 李多杰,孙厚云,卫晓锋,等.内蒙古兴安盟某铅锌矿土壤重金属空间分布特征与生态风险评价[J].矿产勘查,2021,12(4):1030-1039. [36] 吕占禄,张金良,张晗,等.生物质能电厂周边土壤中重金属元素污染特征及评价[J].环境化学,2020,39(12):3480-3494. [37] HUANG X F,HU J W,QIN F X,et al.Heavy metal pollution and ecological assessment around the Jinsha coal-fired power plant (China)[J].Multidisciplinary Digital Publishing Institute,2017,14(12):1589. [38] HIRSCHFELD H O.A connection between correlation and contingency[J].Mathematical Proceedings of the Cambridge Philosophical Society,1935,31(4):520-524. [39] 戚赏,吕灯,杜丹,等.煤矸石场地重金属元素空间分布与迁移过程研究[J].西部资源,2020(6):18-19,22.
点击查看大图
计量
- 文章访问数: 179
- HTML全文浏览量: 33
- PDF下载量: 5
- 被引次数: 0