A SPIRAL DIVERSION WATER DISTRIBUTION DEVICE WITH A SPHERICAL HIGH-FLOWRATE MIXED BED
-
摘要: 基于电厂球形高速混床周期制水量下降的问题,建立典型球形高速混床布水装置的三维模型,采用计算流体动力学(简称CFD)和流固耦合方法研究了穹形、波形挡板以及自研的螺旋导流布水装置在凝结水分布、流动特性以及流动载荷作用下产生的结构力学性能变化等。以速度标准偏差作为流体流动均匀性指标,以多孔板最大形变量作为抗变形指标。计算结果表明:在流量为200~700 t/h时,与穹形挡板和波形板结构相比,自研螺旋导流器布水装置布水均匀性提高了47.3%~59.3%,最大形变量下降了12.2%~27.2%,布水效果改善明显。Abstract: In this paper, aiming at the problem of the decrease of periodic water production volume of the spherical high-speed mixed bed in the power plants, a three-dimensional model of a typical spherical high-speed mixed bed water distribution device was established, and the dome, wave baffle and self-developed spiral diversion were studied using CFD and fluid-solid coupling methods. The performance and difference of the water distribution device in terms of the distribution of condensed water, the flow characteristics, and the changes in the mechanical properties of the structure under the action of the flow load were determined. The speed standard deviation was used as the fluid flow uniformity index, and the maximum deformation of the porous plate was used as the anti-deformation index. The calculation results showed that, at a flow rate of 200~700 t/h, compared with the dome-shaped baffle and corrugated plate structure, the water distribution uniformity of the self-developed spiral deflector water distribution device was increased by 47.3%~59.3%. And then the maximum deformation decreased by 12.2%~27.2%, and the water distribution effect was improved significantly.
-
Key words:
- high-flowrate mixing bed /
- water distribution device /
- CFD /
- uniformity /
- fluid-structure interaction
-
[1] 邓丽娥,何刚.基于凝结水精处理系统周期制水量下降的分析[J].东北电力技术,2020,41(8):47-49. [2] 高平.浅谈火电厂精处理在设备运行中的地位[J].设备管理与维修,2020(6):99-100. [3] 张仕坚.高速混床周期制水量影响因素的探讨[J].科技创新与应用,2018(11):103-104. [4] 田文华,祝晓亮,雷俊茹,等.高速混床双层多孔板式布水装置的研制[J].中国电力,2018,51(11):26-31. [5] 田文华,周莉.凝结水精处理系统节水减排降耗关键技术[J].热力发电,2019,48(1):84-89. [6] 高新开.1000 MW机组凝结水精处理高速混床底部孔板变形原因分析及处理[C]//江西省电机工程学会.2019年江西省电机工程学会年会论文集.南昌:江西省电机工程学会,2019:3. [7] 杨华.一种简易的延长精处理高速混床运行周期的运行方式[J].产业科技创新,2020,22(2):61-62. [8] 赵国钦.凝结水精处理混床内部流场优化及应用[J].山东电力技术,2020,47(2):65-69. [9] 田文华,杨玉,张长亮.基于CFD方法的柱形高速混床布水装置研究[J].热力发电,2020,49(11):89-94. [10] 魏文礼,戴会超.紊流模型理论及工程应用[M].西安:陕西科学技术出版社,2006. [11] 施卫东,王国涛,蒋小平等.流固耦合作用对轴流泵内部流场影响的数值计算[J].流体机械,2012,40(1):31-34,40. [12] 古新,朱培纳,刘敏珊,等.变截面导流筒换热器入口流场均化性能数值仿真[J].化工学报,2012,63(12):3839-3846. [13] 陶红歌,陈焕新,谢军龙,等.基于面积加权平均速度和质量加权平均速度的流体流动均匀性指标探讨[J].化工学报,2010,61(增刊2):116-120. [14] 田文华,杨玉,张长亮.基于CFD方法的柱形高速混床布水装置研究[J].热力发电,2020,49(11):89-94. [15] NGOMA G D,GODARD F.Flow distribution in an eight level channel system[J].Applied Thermal Engineering,2005,25(5/6):831-849. [16] 周健,阎维平,石丽国,等.SCR反应器入口段流场均匀性的数值模拟研究[J].热力发电,2009,38(4):22-25. [17] ZHU D,GU Z Z,XUE T Y,et al.Flow field design in electrochemical machining of diffuser[J].Procedia CIRP,2016,42:121-124. [18] 涂孝飞,杨彦科.某凝结水精处理高速混床树脂扰动原因分析及处理[J].工业水处理,2017,37(1):102-104. [19] 封蔚健,石秀东,姚晨明,等.基于正交试验和Fluent的管翅式换热器结构优化[J].北京化工大学学报(自然科学版),2020,47(1):93-99.
点击查看大图
计量
- 文章访问数: 168
- HTML全文浏览量: 20
- PDF下载量: 3
- 被引次数: 0