RESEARCH PROGRESS OF DESULFURIZATION AND DENITRATION TECHNOLOGIES FOR SINTERING FLUE GAS IN IRON AND STEEL INDUSTRY
-
摘要: 钢铁行业是我国重要的基础行业,也是典型的高污染行业,每年排放大量的二氧化硫(SO2)和氮氧化物(NOx)等大气污染物。随着钢铁行业超低排放标准的实施,对大气污染有主要贡献的烧结工序亟须改造现有的或新建先进的脱硫脱硝设施。在介绍烧结烟气特点和排放标准变化的基础上,综述了目前主流应用的单独脱硫技术、单独脱硝技术和同时脱硫脱硝技术的应用现状,以及实验研发阶段的同时脱硫脱硝技术的研发进展,并系统展望了各类技术的未来发展前景。指出在单独脱硫和脱硝技术中,半干法和低温选择性催化还原法(SCR)更具应用潜力,且半干法脱硫+袋式除尘+SCR的工艺组合环境效益最高;同时脱硫脱硝技术中,氧化法和活性焦法尚需进一步提高效率和降低成本,同时脱硫脱硝技术具有潜在发展前景。Abstract: The iron and steel industry is a key basic industry in China, and a typical industry with high air pollutant emissions, including huge quantities of sulfur dioxide(SO2) and nitrogen oxides(NOx). With the implementation of ultra-low emission standards in the iron and steel industry, it is urgent to renovate the existing or build new advanced desulfurization and denitration facilities in the sintering process. Based on the introduction of the characteristics of the sintering flue gas and the changes in emission standards, this paper summarizes the application status of separate desulfurization technologies, separate denitrification technologies and simultaneous desulfurization and denitration technologies, as well as the research and development progress of simultaneous desulfurization and denitration technologies, and systematically looks forward to the future development prospects of these technologies. The results indicate that among the separate desulfurization and denitrification technologies, semi-dry desulfurization and low temperature selective catalytic reduction(SCR) denitration have a high potential for application. Meanwhile, the process combination of semi-dry desulfurization+bag dust-removal+SCR has the highest cleaning efficiency. Among the simultaneous desulfurization and denitrification technologies, oxidation method and activated coke method still need further improvement in efficiency and cost, and the simultaneous desulfurization and denitrification technologies in research have a promising potential for long-term development.
-
[1] GAO C K,GAO W G,SONG K H,et al.Spatial and temporal dynamics of air-pollutant emission inventory of steel industry in China:a bottom-up approach[J].Resources,Conservation & Recycling,2019,143:184-200. [2] WANG X Y,LEI Y,YAN L,et al.A unit-based emission inventory of SO2,NOx and PM for the Chinese iron and steel industry from 2010 to 2015[J].Science of the Total Environment,2019,676:18-30. [3] 赵森林,冀留庆,李育杰,等.钢铁行业烧结2烟气脱硫产业化发展趋势[C]//第八届(2011)中国钢铁年会论文集,中国金属学会,2011:6. [4] 王建华,邱明英,任乐,等.我国钢铁行业烟气脱硫脱硝工艺运用进展[C]//中国环境科学学会2019年科学技术年会——环境工程技术创新与应用分论坛论文集(四).中国环境科学学会环境工程分会:《环境工程》编辑部,2019:6. [5] 赵雪,程茜,侯俊先.脱硫脱硝行业2017年发展综述[J].中国环保产业,2018(7):10-24. [6] 汤铃,贾敏,伯鑫,等.中国钢铁行业排放清单及大气环境影响研究[J].中国环境科学,2020,40(4):1493-1506. [7] 贺克斌.打赢蓝天保卫战需要加快钢铁行业超低排放改造[N].中国环境报,2019-05-06(3). [8] 世界钢铁协会[EB/OL].https://worldsteel.org/wp-content/uploads/2021%E5%B9%B4%E4%B8%96%E7%95%8C%E9%92%A2%E9%93%81%E7%BB%9F%E8%AE%A1%E6%95%B0%E6%8D%AE.pdf. [9] 张淑会,王宝勇,兰臣臣,等.球团矿化学成分控制现状及展望[J].钢铁,2020,55(8):19-26. [10] 从海外经验,看“碳达峰”背景下粗钢原料发展路径[EB/OL].https://finance.sina.com.cn/money/future/roll/2021-04-26/doc-ikmxzfmk9050562.shtml. [11] 赵莹.微波法处理烧结烟气中氮硫化物实验研究[D].唐山:华北理工大学,2019. [12] 王睿.烧结烟气湿法脱硫废水处理及资源化利用探讨[J].工业安全与环保,2021,47(11):103-106. [13] 吕扬,管闯,尹鹏,等.烧结机烟气湿法脱硫后烟羽消减机理及工艺[J].工程技术研究,2019,4(17):225-226,238. [14] 郭彩云,侯长江,孙宇佳,等.钢铁行业半干法脱硫副产物资源化利用[J].河北冶金,2021(12):72-74. [15] 侯建勇,严芳,姜茜,等.烧结烟气CFB半干法脱硫塔技术研究[J].烧结球团,2021,46(6):27-33. [16] 贾中帅,刘长安,王继平,等.包钢烧结烟气脱硫灰理化特性研究[J].当代化工研究,2021(21):33-35. [17] 张承舟,刘大钧,邹世英,等.我国钢铁行业超低排放实施现状分析与建议[J].环境影响评价,2020,42(4):1-5. [18] YUN Y,ZHANG J Y,LI H L,et al.Simultaneous removal of SO2,NO and mercury using TiO2-aluminum silicate fiber by photocatalysis[J].Chemical Engineering Journal,2012,192:21-28. [19] HAO H,HUI H,SHOHRAT A,et al.Interaction among the simultaneous removal of SO2,NO,and Hg0 by electrochemical catalysis in K2S2O8[J].Fuel,2020,260:116323. [20] CUI L,LIU M Y,YUAN X L,et al.Environmental and economic impact assessment of three sintering flue gas treatment technologies in the iron and steel industry[J].Journal of Cleaner Production,2021,311:127703. [21] 睢辉.烧结烟气脱硫脱硝工艺选择[J].山东工业技术,2021(4):96-99. [22] 史磊.钢铁行业烧结烟气脱硝技术分析及对比[J].能源与节能,2020(3):69-71,103. [23] 竹涛,伊能静,王礼锋,等.烧结烟气脱硫脱硝技术进展[J].河北冶金,2019(1):7-10. [24] 钟婷婷.烧结烟气全国氧含量及京津冀PM、NOx、SO2排放特征研究[D].北京:北京科技大学,2020. [25] 王轲轲.软锰矿干法烧结烟气脱硫研究[D].贵州:贵州大学,2015. [26] 石峥,任晓芬,张子平,等.烧结工序烟气治理方法[J].山东农业大学学报(自然科学版),2020,51(1):168-173. [27] 西门子奥钢联.MEROS-烧结厂废气干法净化新技术[C]//2007中国钢铁年会论文集.中国金属学会,2007:7. [28] ZHAO Y J,FENG J X,CHEN Y M,et al.Thermal process and NO emission reduction characteristics of a new-type coke oven regenerator coupled with SNCR process[J].Fuel,2021,305:121510. [29] JAKOV B,HRVOJE M,MILAN V,et al.Numerical simulation of urea based selective non-catalytic reduction deNOx process for industrial applications[J].Energy Conversion and Management,2016,125:59-69. [30] YAN J R,ZHOU F X,ZHOU Y,et al.Wet oxidation and absorption procedure for NOx removal[J].Environmental Technology & Innovation,2018,11. [31] WANG H Q,ZHUANG Z K,SUN C L,et al.Numerical evaluation of the effectiveness of NO2 and N2O5 generation during the NO ozonation process[J].Journal of Environmental Sciences,2016,41:51-58. [32] 周建富.烧结烟气联合脱硝脱硫的实践应用研究[D].唐山:华北理工大学,2020. [33] 蔡茂宇.烧结/球团烟气臭氧氧化结合SDA法硫硝协同控制技术研究[D].贵阳:贵州大学,2020. [34] CHENG G B,DUAN X L,QI X F,et al.Nitration of aromatic compounds with NO2/air catalyzed by sulfonic acid-functionalized ionic liquids[J].Catalysis Communications,2008,10(2):201-204. [35] LI Y,CHE D F,ZHAO H C,et al.Tributyl phosphate additive enhancing catalytic absorption of NO2 for simultaneous removal of SO2/NOx in wet desulfurization system[J].Journal of the Energy Institute,2020,93(2):474-481. [36] WANG B W,YAO S M,PENG Y P.Simultaneous desulfurization and denitrification of flue gas by pre-ozonation combined with ammonia absorption[J].Chinese Journal of Chemical Engineering,2020,28(9):2457-2466. [37] SHAO J M,MA Q,WANG Z H,et al.A superior liquid phase catalyst for enhanced absorption of NO2 together with SO2 after low temperature ozone oxidation for flue gas treatment[J].Fuel,2019,247:1-9. [38] LI Y,YANG C L,YAO M Y,et al.Research and engineering practice of catalytic absorption of NO2 by tetrabutylammonium hydrogen sulfate for simultaneous removal of SO2/NOx[J].Fuel,2021,283:118858. [39] MENG Z H,WANG C Y,WANG X R,et al.Simultaneous removal of SO2 and NOx from flue gas using (NH4)2S2O3/steel Slag Slurry Combined With Ozone Oxidation[J].Fuel,2019,255:115760. [40] 王新东,侯长江,田京雷.钢铁行业烟气多污染物协同控制技术应用实践[J].过程工程学报,2020,20(9):997-1007. [41] 冶飞,李维浩.关于烧结烟气联合脱硫脱硝技术路线的探讨[J].新疆钢铁,2019(4):18-21. [42] ABDULRASHEED A A,JALIL A A,TRIWAHYONO S,et al.Ibrahim.Surface modification of activated carbon for adsorption of SO2 and NOx:a review of existing and emerging technologies[J].Renewable and Sustainable Energy Reviews,2018,94:1067-1085. [43] 左嫣然,易红宏,唐晓龙,等.酸碱改性对活性焦烧结烟气脱硫性能的影响[J].环境工程学报,2015,9(7):3405-3410. [44] 张云雷.活性焦烟气净化反应器脱硝内构件的模拟及优化[D].北京:煤炭科学研究总院,2020. [45] 张威力,吴胜利,胡中杰.活性焦法烧结烟气脱硝率影响因素解析[J].钢铁,2020,55(5):109-115. [46] 张威力,吴胜利,胡中杰.活性焦法烧结烟气脱硫率影响因素统计解析[J].钢铁研究学报,2020,32(4):281-288. [47] LI Y J,ZHANG X L,LIN H F,et al.The simultaneous removal of SO2 and NO from flue gas over activated coke in a multi-stage fluidized bed at low temperature[J].Fuel,2020,275:117862. [48] LI Q Y,HOU Y Q,HAN X J,et al.Promotional effect of cyclic desulfurization and regeneration for selective catalytic reduction of NO by NH3 over activated carbon[J].Journal of Cleaner Production,2020,249:119392. [49] LI Y R,LIN Y T,WANG B,et al.Carbon consumption of activated coke in the thermal regeneration process for flue gas desulfurization and denitrification[J].Journal of Cleaner Production,2019,228:1391-1400. [50] LI J,ZHANG L Q,ZHAO X Q,et al.Insights into the effect of regeneration temperature on physicochemical properties and SO2 removal over powdered activated coke[J].Fuel,2021,288:119715. [51] ZUO Y R,YI H H,TANG X L.Metal-modified active coke for simultaneous removal of SO2 and NOx from sintering flue gas[J].Energy & Fuels,2014:377-383. [52] ZUO Y R,YI H H,TANG X L,et al.Study on active coke-based adsorbents for SO2 removal in flue gas[J].Journal of Chemical Technology Biotechnology,2014:1876-1885. [53] 邵晶.微波放电对活性焦同时脱硫脱硝影响的试验研究[D].太原:太原理工大学,2020. [54] NIU J,ZHANG H R,LI L B,et al.Cost-effective activated carbon (AC) production from partial substitution of coal with red mud (RM) as additive for SO2 and NOx abatement at low temperature[J].Fuel,2021,293:120448. [55] YAN Y G,MAO Z J,LUO J J,et al.Simultaneous removal of SO2,NOx, and Hg0 by O3 oxidation integrated with bio-charcoal adsorption[J].Journal of Fuel Chemistry and Technology,2020,48(12):1452-1460. [56] LIAM J F,LI W,ZHANG Y K,et al.A superior Fe-Zr mixed oxide catalyst for the simultaneous reduction of NO and SO2 with CO[J].Applied Catalysis B:Environmental,2020,269:118822. [57] CHEN R,ZHANG T S,WANG J W,et al.Recent advances in simultaneous removal of SO2 and NOx from exhaust gases:removal process,mechanism and kinetics[J].Chemical Engineering Journal,2020:127588. [58] CUI S P,HAO R L,FU D.An integrated system of dielectric barrier discharge combined with wet electrostatic precipitator for simultaneous removal of NO and SO2:key factors assessments,products analysis and mechanism[J].Fuel,2018,221:12-20. [59] ANNA N,KYO-SEON K.Effects of TiO2 coating on zeolite particles for NO and SO2 removal by dielectric barrier discharge process[J].Catalysis Today,2013,211:90-95. [60] 田恬,程茜,赵雪,等.2019年脱硫脱硝行业发展评述及展望[J].中国环保产业,2020(2):23-25,28. [61] 常治铁.SDS+SCR工艺在焦炉烟气脱硫脱硝中的应用[J].中国冶金,2019,29(10):65-70. [62] 李永光,安璐.焦炉烟气低温SCR脱硝催化剂的研究与开发[J].燃料与化工,2020,51(4):43-47. [63] GAO F Y,TANG X L,YI H H,et al.Promotional mechanisms of activity and SO2 tolerance of Co- or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature[J].Chemical Engineering Journal,2017,317:20-31. [64] TANG X L,SHI Y R,GAO F Y,et al.Promotional role of Mo on Ce0.3FeOx catalyst towards enhanced NH3-SCR catalytic performance and SO2 resistance[J].Chemical Engineering Journal,2020,398:125619. [65] ZHANG J K,CHEN C Q,CHEN S,et al.Highly dispersed Pt nanoparticles supported on carbon nanotubes produced by atomic layer deposition for hydrogen generation from hydrolysis of ammonia borane[J].Catalysis Science & Technology,2017,7(2):322-329. [66] REN M,LU P,LIU X R,et al.Decarbonizing China’s iron and steel industry from the supply and demand sides for carbon neutrality[J].Applied Energy,2021,298:117209. [67] RAMSES S,ANNEMIE B.Plasma technology-a novel solution for CO2 conversion[J].Chemical Society Reviews,The Royal Society of Chemistry,2017,46(19):5805-5863.
点击查看大图
计量
- 文章访问数: 387
- HTML全文浏览量: 71
- PDF下载量: 16
- 被引次数: 0