中文核心期刊
CSCD来源期刊(核心库)
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磺胺甲噁唑对序批式生物反应器脱氮性能及微生物群落的影响

闫多森 杨文 李姗姗 焦燕 张国栋 陈清华 李赟

闫多森, 杨文, 李姗姗, 焦燕, 张国栋, 陈清华, 李赟. 磺胺甲噁唑对序批式生物反应器脱氮性能及微生物群落的影响[J]. 环境工程, 2022, 40(10): 15-23,70. doi: 10.13205/j.hjgc.202210003
引用本文: 闫多森, 杨文, 李姗姗, 焦燕, 张国栋, 陈清华, 李赟. 磺胺甲噁唑对序批式生物反应器脱氮性能及微生物群落的影响[J]. 环境工程, 2022, 40(10): 15-23,70. doi: 10.13205/j.hjgc.202210003
YAN Duosen, YANG Wen, LI Shanshan, JIAO Yan, ZHANG Guodong, CHEN Qinghua, LI Yun. EFFECT OF SULFAMETHOXAZOLE ON NITROGEN REMOVAL AND MICROBIAL COMMUNITY OF SEQUENCING BATCH BIOREACTORS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 15-23,70. doi: 10.13205/j.hjgc.202210003
Citation: YAN Duosen, YANG Wen, LI Shanshan, JIAO Yan, ZHANG Guodong, CHEN Qinghua, LI Yun. EFFECT OF SULFAMETHOXAZOLE ON NITROGEN REMOVAL AND MICROBIAL COMMUNITY OF SEQUENCING BATCH BIOREACTORS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 15-23,70. doi: 10.13205/j.hjgc.202210003

磺胺甲噁唑对序批式生物反应器脱氮性能及微生物群落的影响

doi: 10.13205/j.hjgc.202210003
基金项目: 

青岛农业大学高层次人才启动基金(665/1120042)

山东省自然科学基金面上项目(ZR2021ME164)

详细信息
    作者简介:

    闫多森(1997-),男,硕士研究生,主要研究方向为水资源利用和水污染控制。sdyds2022@163.com

    通讯作者:

    李姗姗(1988-),女,博士,副教授,主要研究方向为水资源利用和水污染控制。lss1988@qau.edu.cn

EFFECT OF SULFAMETHOXAZOLE ON NITROGEN REMOVAL AND MICROBIAL COMMUNITY OF SEQUENCING BATCH BIOREACTORS

  • 摘要: 研究了长期暴露条件下磺胺甲噁唑(SMX)对序批式生物反应器(SBR)脱氮性能及微生物群落的影响。结果表明:长期暴露于6 mg/L的SMX环境中,SBR对有机物和NH4+-N的去除无明显变化。COD的平均去除率为(92.57±0.92)%,NH4+-N的平均去除率达到(98.71±0.34)%;NO2--N和NO3--N的出水浓度随运行时间的增加而升高;在第104天时反应器比耗氧速率(SOUR)、比氨氧化速率(SAOR)、比亚硝酸盐氧化速率(SNOR)、比硝酸盐还原速率(SNRR)和比亚硝酸盐还原速率(SNIRR)较添加SMX前分别下降了23.33%、24.47%、28.29%、14.97%和15.81%。SMX的存在致使胞外聚合物(EPS)、松散型胞外聚合物(LB-EPS)和紧密型胞外聚合物(TB-EPS)及其中的蛋白质(PN)和多糖(PS)含量随运行时间的增长而增加,PN/PS呈上升趋势。活性氧(ROS)的生成量和乳酸脱氢酶(LDH)的释放量随运行时间的增长而增加。6 mg/L的SMX可使活性污泥微生物群落的丰富度降低,多样性升高,降低了变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)和γ-变形菌纲(Gammaproteobacteria)的相对丰度,从而影响了SBR的脱氮性能。
  • [1] 张垚, 王静. 水环境抗生素残留及其生态与健康影响[J]. 湖北医药学院学报, 2019, 38(6):6-8.
    [2] 徐诚, 张娟. 水体环境中残留抗生素污染的研究进展[C]//上海市预防医学会, 环境与职业医学杂志社, 复旦大学, 上海市预防医学会《环境与职业医学》杂志社, 2016.
    [3] 吴娜娜, 钱虹, 李亚峰. 水中磺胺类抗生素去除技术研究进展[J]. 建筑与预算, 2017(6):43-50.
    [4] HARTMANN A, ALDER A C, KOLLER T, et al. Identification of fluoroquinolone antibiotics as the main source of human genotoxicity in native hospital wastewater[J]. Environmental Toxicology and Chemistry, 1998, 17:377-382.
    [5] 王作铭, 陈军, 陈静, 等. 地表水中抗生素复合残留对水生生物的毒性及其生态风险评价[J]. 生态毒理学报, 2018, 13(4):12-15.
    [6] 熊小波, 孙博琳, 秦静婷, 等. 磺胺甲噁唑对赤子爱胜蚓肠道微生物群落的影响[J]. 环境科学学报, 2020, 40(11):4207-4214.
    [7] 卜兆宇, 俞世霖. 水体中磺胺甲噁唑的存在及其毒性研究机理[J]. 河南城建学院学报, 2016, 25(5):5-8.
    [8] 张滢楹. 环境浓度选择性压力改变活性污泥微生物群落结构[J].生态毒理学报,2015,10(5):66-74.
    [9] 赵美玲. 磺胺甲噁唑对强化生物除磷系统的影响研究[D]. 天津:天津大学, 2012.
    [10] ABBASS J K, ALISTAIR K B, CHARLES S W, et al. Variation in bacterial community structure of aerobic granular and suspended activated sludge in the presence of the antibiotic sulfamethoxazole[J]. Bioresource Technology, 2018, 261:322-328.
    [11] COLLADO N, BUTTIGLIERI G, MARTI E, et al. Effects on activated sludge bacterial community exposed to sulfamethoxazole[J]. Chemosphere, 2013, 93:99-106.
    [12] 苏小莉. 磺胺甲噁唑厌氧降解菌群的富集及降解特性研究[D]. 哈尔滨:哈尔滨工业大学, 2019.
    [13] 李娟英,王肖颖,解满俊,等. 磺胺和四环素类抗生素对活性污泥性能的影响[J].环境工程学报,2014,8(2):573-580.
    [14] WANG L, LI Y, WANG L, et al. Responses of biofilm microorganisms from moving bed biofilm reactor to antibiotics exposure:protective role of extracellular polymeric substances[J]. Bioresource Technology, 2018,254:268-277.
    [15] ZHANG Y Y, GENG J J, MA H J, et al. Characterization of microbial community and antibiotic resistance genes in activated sludge under tetracycline and sulfamethoxazole selection pressure[J]. Science of the Total Environment, 2016, 571:479-486.
    [16] SCHMIDT S, WINTER J, GALLERT C. Long-term effects of antibiotics on the elimination of chemical oxygen demand, nitrification, and viable bacteria in laboratory-scale wastewater treatment plants[J]. Archives Environmental Contamination and Toxicology, 2012, 63(3):354-364.
    [17] KATIPOGLU-YAZAN T, ERLIN C, PONS M N, et al. Chronic impact of sulfamethoxazole on the metabolic activity and composition of enriched nitrifying microbial culture[J]. Water Research, 2016, 100:546-555.
    [18] FAN N S, BAI Y H, CHEN Q Q, et al. Deciphering the toxic effects of antibiotics on denitrification:process performance, microbial community and antibiotic resistance genes[J]. Journal of Environmental Management, 2020, 262:110375.1-110375.8.
    [19] 刘萌萌, 孙辰, 侯芳,等. 微量元素和无机酸根阴离子对厌氧消化的影响[J]. 山东化工, 2019, 48(7):211-213.
    [20] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002. 261-282.
    [21] 王子超. 盐度和重金属对序批式生物反应器性能及微生物群落结构影响的研究[D]. 青岛:中国海洋大学, 2014.
    [22] 黄圣琳. 活性污泥系统中四环素对其降解微生物抗性及群落结构的作用影响[D]. 上海:东华大学, 2015.
    [23] 张滢楹. 典型抗生素对SBR系统微生物活性与种群结构的影响研究[D]. 南京:南京大学, 2016.
    [24] LI X Y, YANG S F. Influence of loosely bound extracellular poly-meric substances (EPS) on the flocculation,sedimentation anddewaterability of activated sludge[J]. Water Research, 2007, 41:1022-1030.
    [25] FROLUND B, PALMGREN R, KEIDING K, et al. Extraction of extracel-lular polymers from activated sludge using a cation exchange:resin[J]. Water Research, 1996,30(8):1749-1758.
    [26] 万小平. 环境相关浓度磺胺嘧啶对好氧颗粒污泥的影响及其去除机制[D]. 济南:山东大学, 2018.
    [27] 尹军, 王雪峰, 王建辉, 等. SBR工艺活性污泥比耗氧速率与控制参数的关系[J]. 环境污染与防治, 2007, 29(7):481-483.
    [28] LI H, ZHANG J F, SHEN L, et al. Production of polyhydroxyalkanoates by activated sludge:correlation with extracellular polymeric substances and characteristics of activated sludge[J]. Chemical Engineering Journal, 2019, 361:219-226.
    [29] GUO H X, van LIER J B, de KREUK M. Digestibility of waste aerobic granular sludge from a full-scale municipal wastewater treatment system[J]. Water Research, 2020, 173:115617-115621.
    [30] SUTHERLAND I. Biofilm exopolysaccharides:a strong and sticky framework[J]. Microbiology, 2001, 147(1):3-9.
    [31] LIU X, LIU J, DENG D, et al. Investigation of extracellular polymeric substances (EPS) in four types of sludge:factors influencing EPS properties and sludge granulation[J]. Journal of Water Process Engineering, 2021, 40:101924-101931.
    [32] HENRIQUES I S, LOVE N G. The role of extracellular polymeric substances in the toxicity response of activated sludge bacteria to chemical toxins[J]. Water Research, 2007, 41(18):4177-4185.
    [33] XU J, SHENG G P, MA Y, et al. Roles of extracellular polymeric substances (EPS) in the migration and removal of sulfamethazine in activated sludge system[J]. Water Research, 2013, 47(14):5298-5306.
    [34] WU D L, ZHENG S S, DING A Q, et al. Performance of a zero valent iron-based system in swine wastewater treatment[J]. Journal of Hazardous Materials, 2015, 286:1-6.
    [35] MA J Y, QUAN X C, SI X R, et al. Responses of anaerobic granule and flocculent sludge to ceria nanoparticles and toxic mechanisms[J]. Bioresource Technology, 2013, 149:346-352.
    [36] 刘武康, 吴淑燕, 陈国薇, 等. 细菌产生的活性氧及其功能[J]. 微生物学杂志, 2016, 36(1):89-95.
    [37] 夏瑜, 何绪文, 文湘华. 微生物群落多样性数学表征方法及其在污水处理系统研究中的应用[J]. 微生物学通报, 2018, 45(8):1778-1786.
    [38] MA B R, YU N L, HAN Y T, et al. Effect of magnesium oxide nanoparticles on microbial diversity and removal performance of sequencing batch reactor[J]. Journal of Environmental Management, 2018, 222:475-482.
    [39] JU F, ZHANG T. Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatmeng plant[J]. The ISME Journal, 2015, 9(3):683-695.
    [40] 姚芳. 厌氧氨氧化快速启动及磺胺类抗生素对其稳定运行影响的研究[D]. 南京:南京大学, 2017.
    [41] WANG L K, ZENG G M, YANG Z H, et al. Operation of partial nitrification to nitrite of landfill leachate and its performance with respect to different oxygen conditions[J]. Biochemical Engineering Journal, 2014,87:62-68.
    [42] LANGILLE M, ZANEVELD J, CAPORASO J G, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology, 2013, 31(9):814-821.
  • 加载中
计量
  • 文章访问数:  75
  • HTML全文浏览量:  9
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-07

目录

    /

    返回文章
    返回