DEGRADATION OF METHYL ORANGE BY CuO/g-C3N4 ACTIVATED PEROXODISULFATE
-
摘要: 采用水热-煅烧法合成了CuO/g-C3N4催化剂,利用X射线衍射仪、扫描电镜、红外吸收光谱和X射线能谱对其基本性能进行表征,进一步研究了不同参数下CuO/g-C3N4活化过二硫酸盐(PDS)体系对有机污染物(甲基橙,MO)的去除效果。活化实验结果表明:CuO/g-C3N4对活化PDS降解MO具有明显效果。优化实验结果表明:在催化剂的水热时间为8 h,CuO复合比为10%,反应体系中催化剂初始浓度为1.00 g/L,PDS初始浓度为4 mmol/L,pH=3的条件下,30 min内MO的降解率高达99.20%。机理分析表明催化剂表面的硫酸根自由基(SO4-·)和羟基自由基(·OH)是降解MO的主要活性物质,并且有少量超氧自由基(·O2-)参与其中。对该催化剂进行5次重复实验后,活化PDS对MO降解率仍保持在90%以上,表明该催化剂有较好的稳定性。Abstract: In this paper, the CuO/g-C3N4 was synthesized by the hydrothermal-calcination method, and its basic properties were characterized by X-ray diffractometer, scanning electron microscope, infrared absorption spectroscopy and X-ray energy spectroscopy. Under different parameters, CuO/g-C3N4 activated peroxodisulfate (PDS) system to remove organic pollutants (methyl orange, MO). The results of activation experiments show that CuO/g-C3N4 has a significant effect on activating PDS and degrading MO. Through the optimization experiment, it can be seen that under the conditions of 8 h of hydrothermal time of catalyst, 10% of CuO composite ratio, initial concentration of catalyst in the reaction system of 1.00 g/L, initial concentration of PDS of 4 mmol/L and pH=3, the degradation rate of internal MO is as high as 99.20% in 30min. Further mechanism exploration verified that sulfate radicals (SO4-·) and hydroxyl radicals (·OH) on the surface of the catalyst are the main active substances that degrade MO, and a small amount of superoxide radicals (·O2-) participate in them. The catalyst was repeated 5 times, and the degradation rate of MO remained above 90% after activating PDS, indicating that the catalyst had a good stability.
-
Key words:
- g-C3N4 /
- copper oxide /
- persulfate /
- methyl orange /
- oxidative degradation
-
[1] HOMAEIGOHAR S. The nanosized dye adsorbents for water treatment[J]. Nanomaterials, 2020, 10(2):295. [2] 范荣桂, 黄大青, 方辽卫, 等. 高级氧化技术在纺织印染废水处理中的应用[J]. 安全与环境工程, 2011, 18(2):40-44. [3] 陈会娟. 环保型聚合物修饰的磁性碳纳米管吸附去除典型有机染料性能的研究[D]. 太原:山西师范大学, 2020. [4] 蒋雪蕾. 石莼基生物质对染料和抗生素的吸附研究[D]. 扬州:扬州大学, 2021. [5] 国泛函.工业染料废水处理工艺研究进展综述[J]. 中国资源综合利用, 2020, 38(11):94-96. [6] 黄万抚, 严思明, 丁声强. 膜分离技术在印染废水中的应用及发展趋势[J]. 有色金属科学与工程, 2012, 3(2):41-45. [7] 李欣珏, 钱飞跃, 李暮, 等. 活性炭吸附对印染废水生化出水中不同种类有机物的去除效果[J]. 环境化学, 2012, 31(3):396-397. [8] 任南琪, 周显娇, 郭婉茜, 等. 染料废水处理技术研究进展[J]. 化工学报, 2013, 64(1):84-94. [9] 杨焱明, 冷艳秋, 林欣, 等. Fe3O4/石墨烯活化过硫酸盐降解罗丹明B废水的研究[J]. 环境科学与管理, 2014, 39(4):80-84. [10] 张凌星, 肖鹏飞. 活化过硫酸盐氧化处理抗生素废水的研究进展[J]. 工业水处理, 2021, 41(5):29-35. [11] 陈聪聪. Mn3O4/g-C3N4催化膜活化过硫酸盐降解水中有机污染物的研究[D]. 济南:山东大学, 2020. [12] 张霄, 张静, 闫春晖, 等. CuO@C催化过二硫酸盐降解盐酸四环素研究[J]. 水处理技术, 2019, 45(4):17-20,26. [13] 陈卫刚, 武海霞, 樊佳炜. 活性炭非均相活化不同过硫酸盐降解偶氮染料酸性橙Ⅱ[J]. 环境工程, 2020, 38(8):113-118,57. [14] 李嘉宝, 张金铭. 过硫酸盐高级氧化技术活化方式的研究进展[J].辽宁化工,2021,50(6):850-853. [15] 陈碧琦, 孙德栋, 王国文, 等. 铜非均相催化过硫酸盐降解废水[J]. 大连工业大学学报, 2019, 38(1):44-47. [16] GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants:review[J]. Chemical Engineering Journal, 2017, 310(1):41-62. [17] 孙怡, 于利亮, 黄浩斌, 等. 高级氧化技术处理难降解有机废水的研发趋势及实用化进展[J]. 化工学报, 2017, 68(5):1743-1756. [18] 徐琳祥. 过渡金属掺杂的碳纳米复合材料合成及水解制氢性能研究[D]. 金华:浙江师范大学, 2019. [19] 肖刚, 邵娜, 向铎, 等. 用于高温储能的CuO/Cu2O反应特性与改性优化[J]. 太阳能学报, 2021, 42(4):293-298. [20] 李瑞桢, 徐秋鹏, 汪虹西, 等. 类石墨相C3N4可见光催化还原Cr(Ⅵ)废水的研究[J]. 中国给水排水, 2017, 33(5):89-93. [21] YAN Q S, ZHAO Y L, XU M M. Enhanced visible-light photocatalytic performance of various bismuth oxyiodide with 3D hierarchical microspheres architecture[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(7):7731-7737. [22] LI X, ZHU W, LU X, et al. Integrated nanostructures of CeO2/attapulgite/g-C3N4 as efficient catalyst forphotocatalytic desulfurization:mechanism, kinetics and influencing factors[J]. Chemistry Engineer, 2017, 326(1):87-98. [23] 艾兵, 李佳奇, 刘凡, 等. S掺杂石墨型氮化碳的制备及光催化性能研究[J]. 分子科学学报, 2020, 36(6):511-515. [24] 赵芳玉, 胡筱敏, 郭鹏瑶. 焙烧条件对热聚合法制备石墨相氮化碳光催化性能的影响及其机理[J]. 环境工程, 2021, 39(5):55-60,70. [25] 程余磊, 孙明轩, 孙善富, 等. 一步原位锻烧法制备Ag/CeO2/g-C3N4复合光催化剂及其性能[J]. 微纳电子技术, 2021, 58(6):484-488,557. [26] 丁丽丹, 周家斌, 刘文博, 等. CuO/Bi2O3光催化耦合过一硫酸盐氧化降解盐酸四环素[J]. 环境工程学报, 2021, 15(3):898-910. [27] 罗从伟. 紫外/过硫酸盐高级氧化降解典型有机微污染物效能及作用机制[D]. 哈尔滨:哈尔滨工业大学, 2017. [28] ZHANG H, WANG Z, LIU C, et al. Removal of COD from landfill leachate by an electro/Fe2+/peroxydisulfate process[J]. Chemical Engineering Journal, 2014, 250(1):76-82. [29] 李静, 吴钦, 张资, 等. Ce掺杂铁基催化剂活化过硫酸盐降解罗丹明B[J]. 中国给水排水, 2021, 37(15):95-101. [30] ZULFIKARM A, AFRITA S, WAHYUNINGRUM D, et al. Preparation of Fe3O4-chitosan hybrid nano-particles used for humic acid adsorption[J]. Environmental Nanotechnology Monitoring & Management, 2016, 6(1):64-75. [31] HE Y Q, MA Z Y, JUNIOR L B. Distinctive binary g-C3N4/MoS2 heterojunctions with highly efficient ultrasonic catalytic degradation for levofloxacin and methylene blue[J]. Ceramics International, 2020, 46(8):12364-12372. [32] 赵菁, 张改, 马爱洁, 等. 高级氧化法处理模拟印染废水的研究[J]. 工业水处理, 2015, 35(3):37-39,56. [33] 王艳, 李春华, 龚畏, 等. 四氧化三铁活化过硫酸盐降解活性黑5[J]. 环境污染与防治, 2018, 40(8):861-863. [34] 冯俊生, 姚海祥, 蔡晨, 等. CuO强化MFC活化过硫酸盐降解偶氮染料废水及同步产电研究[J]. 环境科学学报, 2019, 39(4):1157-1165. [35] 王丽娟, 王莹, 李晓宁, 等. 石墨相氮化碳活化过二硫酸盐降解亚甲基蓝的研究[J]. 工业水处理, 2019, 39(3):75-79. [36] 韩仪, 黄明杰, 周涛, 等. 氧化铜活化过硫酸盐的界面反应机理[J]. 环境化学, 2020, 39(3):735-744. [37] 李文清. 氧化铜活化过硫酸盐降解医药品类污染物[D]. 石家庄:河北师范大学, 2020. [38] 胡玉洪,吴文卫. g-C3N4和CuO复合材料的制备、表征及光催化研究[J]. 人工晶体学报,2017, 46(3):566-572. [39] 罗力莎,辛丙靖,刘伟,等. g-C3N4可见光催化降解水中环丙沙星的效能研究[J]. 科学技术创新,2021(36):64-66. [40] 李一凡,王应军,廖鑫. CuO/Ac催化过硫酸盐对模拟废水中苯酚的降解效果[J]. 环境科学研究,2018, 31(11):1949-1956.
点击查看大图
计量
- 文章访问数: 164
- HTML全文浏览量: 33
- PDF下载量: 6
- 被引次数: 0