EFFECT OF INSTANTANEOUS NH4+-N SHOCK ON POLLUTANTS REMOVAL IN A MICRO PRESSURE REACTOR
-
摘要: 探究NH4+-N冲击对微压反应器(MPR)污染物去除效率的影响,通过提高单周期瞬时进水NH4+-N浓度至40,50 mg/L,对MPR进行冲击。结果表明:常规负荷下,MPR具有良好的污染物去除效果。冲击周期降解历时数据显示,在进水40 mg/L NH4+-N冲击周期内进水ρ(COD)、ρ(NH4+-N)、ρ(TP)分别为192.58,40.96,2.52 mg/L,出水分别为38.16,0.70,0.26 mg/L,去除效果无显著变化,出水TN浓度上升至16.04 mg/L。增加NH4+-N冲击浓度至50 mg/L,冲击周期内NH4+-N降解速率不变,反硝化速率提高,出水ρ(NH4+-N)、ρ(TN)升高至4.95,17.62 mg/L,TN降解主要受碳源不足影响;TP去除效果无变化,冲击后57个周期内除磷系统受到影响,出水TP出现较大波动,最高浓度达到2.6 mg/L。以上结果表明,MPR系统受到NH4+-N冲击后1个周期内,脱氮性能即可恢复,说明冲击对脱氮系统造成了可逆的短期影响,但对除磷系统造成不可逆的长期影响。Abstract: The effect of NH4+-N shock on pollutants' removal efficiency of the micro-pressure reactor (MPR) was investigated by increasing the single cycle instantaneous influent NH4+-N concentration to 40 and 50 mg/L and shocking the MPR. The results showed that the MPR had a good pollutant removal effect under conventional load. The degradation epoch of the shock cycle showed that in the influent 40 mg/L NH4+-N shock cycle, the influent concentrations of COD, NH4+-N, and TP were 192.58, 40.96, and 2.52 mg/L, and the effluent concentrations were 38.16, 0.70, and 0.26 mg/L, respectively, with no significant changes in the removal effect, and the effluent TN concentration increased to 16.04 mg/L. When the NH4+-N concentration shock was increased to 50 mg/L, the NH4+-N degradation rate remained unchanged and the denitrification rate increased during the impact cycle, and the effluent NH4+-N and TN concentrations increased to 4.95 and 17.62 mg/L. TN degradation was mainly affected by the lack of carbon source, and there was no change in TP removal effect. The above results showed that the nitrogen removal performance of the MPR system recovered within 1 cycle after the impact of NH4+-N, indicating a reversible short-term effect on the nitrogen removal system. An irreversible long-term effect on the phosphorus removal system was observed.
-
Key words:
- NH4+-N concentration /
- instant shock /
- MPR /
- removal effect
-
[1] 骆欣,杨宗政,顾平. 缺氧-好氧膜生物反应器处理高氨氮废水的研究[J]. 华北科技学院学报,2007,4(1):33-36. [2] 闫家望. 高氨氮废水处理技术及研究现状[J]. 中国资源综合利用,2018,36(3):99-101. [3] GOLOVKO K, TIHOMIROVA K, NEILANDS R, et al.Short-term effect of shock ammonium nitrogen load on activated sludge properties[J]. Water Science & Technology, 2019,80(11):2191-2199. [4] BI Z L, ZHANG Y, SHI P, et al. The impact of land use and socio-economic factors on ammonia nitrogen pollution in Weihe River watershed, China[J]. Environmental Science and Pollution Research International, 2021,28(14):17659-17674. [5] FISCHER M A, ULBRICHT A, NEULINGER S C, et al. Immediate effects of ammonia shock on transcription and composition of a biogas reactor microbiome[J]. Frontiers in Microbiology, 2019, 10:2064. [6] 彭赵旭,彭永臻,桂丽娟,等. 氨氮冲击负荷对硝化过程的短期影响[J].中国给水排水,2010,26(11):9-12. [7] 范举红,李昌湖,钱志军,等. 高浓度氨氮污水对A2/O系统的影响[J].给水排水,2008,44(增刊1):179-181. [8] 边德军. 微压内循环多生物相反应器研制及性能研究[D].长春:东北师范大学,2015. [9] 任庆凯,李成彬,刘江川,等.微压内循环反应器的CFD模拟与试验研究[J].长春工程学院学报(自然科学版),2013,14(4):11-14. [10] 田曦, 万立国, 边德军. 多菌群污水处理方法处理城市污水的理论研究[J]. 环境科学与技术, 2010,33(增刊1):374-375. [11] 李清哲,边德军,聂泽兵,等.MPSR无污泥外排系统长期运行机制分析[J].中国环境科学,2021,41(1):169-176. [12] 国家环境保护总局.水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002:227-285. [13] BIAN D J, ZHOU D D, HUO M X, et al. Improving oxygen dissolution and distribution in a bioreactor with enhanced simultaneous COD and nitrogen removal by simply introducing micro-pressure and swirl[J]. Applied Microbiology and Biotechnology, 2015, 99(20):8741-8749. [14] NIE Z B, HUO M X, WANG F, et al. Pilot study on urban sewage treatment with micro pressure swirl reactor[J]. Bioresource Technology, 2021, 320:124305. [15] 刘伟华. MPSR处理低温低碳源城市污水中试研究[D].长春:长春工程学院,2018. [16] 王帆, 么兴荣, 刘松林, 等. 有机负荷冲击对微压反应器去除效率影响及调控策略[J]. 中国环境科学, 2021,41(8):3667-3665. [17] PAŚMIONKA I B, BULSKI K, HERBUT P, et al. Toxic effect of ammonium nitrogen on the nitrification process and acclimatisation of nitrifying bacteria to high concentrations of NH+4-N in wastewater[J]. Energies, 2021, 14(17):5329. [18] PUIGAGUT J, SALVADÓ H, GARCÍA J. Short-term harmful effects of ammonia nitrogen on activated sludge microfauna[J]. Water Research, 2005, 39(18):4397-4404. [19] HUANG X J, TIE W Z, XIE D T, et al. Low C/N ratios promote dissimilatory nitrite reduction to ammonium in pseudomonas putida Y-9 under aerobic conditions[J]. Microorganisms, 2021, 9(7):1524. [20] 高景峰,彭永臻,王淑莹.DO和ORP与SBR法硝化反硝化的相关关系[J].哈尔滨建筑大学学报,2002,35(1):61-65. [21] 高景峰,彭永臻,王淑莹,等.以DO、ORP、pH控制SBR法的脱氮过程[J].中国给水排水,2001,17(4):6-11. [22] 郭尚黎,田曦,艾胜书,等.好氧条件下pH的变化与氨氮去除率相关性关系研究[J].长春工程学院学报(自然科学版),2018,19(1):62-65. [23] 袁璐,马慧荣,贾玉蕾,等.聚磷菌以乙酸为基质的厌氧生化机理研究进展[J].中国给水排水,2013,29(4):8-11. [24] 罗忆涵, 陈莹, 解舒婷, 等. 温度、DO及C/N值对SBBR工艺脱氮除磷的影响[J]. 中国给水排水, 2021,37(9):82-89. [25] 姚瑞珍,周国胜,张杰,等.DO和pH作为SBR硝化终点参数试验研究[J].给水排水,2007,33(增刊1):162-164. [26] 李冬,苏庆岭,梁瑜海,等.碱度和pH值对CANON工艺脱氮效果的影响[J].中国给水排水,2015,31(3):13-18. [27] WU H, ZHANG Q, CHEN X, et al. Efficiency and microbial diversity of aeration solid-phase denitrification process bioaugmented with HN-AD bacteria for the treatment of low C/N wastewater[J]. Environmental Research, 2021, 202:111786. [28] XU H H, DENG Y P, LI X Y, et al. Effect of increasing C/N ratio on performance and microbial community structure in a membrane bioreactor with a high ammonia load[J]. International Journal of Environmental Research and Public Health, 2021, 18(15):8070. [29] 徐少娟,蒋涛,殷峻,等. 进水氨氮浓度对强化生物除磷(EBPR)系统除磷特性及微生物群落结构的影响[J].环境科学学报,2011,31(4):745-751. [30] 吴昌永,彭永臻,万春黎,等.碳源对EBPR代谢过程及微生物特性的影响[J].环境科学,2009,30(7):1990-1994. [31] 邱春生,聂海伦,孙力平,等.不同碳源条件下聚磷菌代谢特性[J].环境工程学报,2014,8(6):2191-2197. [32] CHEN H J, ZHOU W Z, ZHU S N, et al. Biological nitrogen and phosphorus removal by a phosphorus-accumulating bacteria Acinetobacter sp. strain C-13 with the ability of heterotrophic nitrification-aerobic denitrification[J]. Bioresource Technology, 2021, 322:124507.
点击查看大图
计量
- 文章访问数: 94
- HTML全文浏览量: 19
- PDF下载量: 3
- 被引次数: 0