CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合固体碳源强化农村生活污水处理工艺脱氮性能及其功能性菌群研究

蒋严波 凌威 韦纯忠 韦愿 吴春凤 王超 孟凡刚

蒋严波, 凌威, 韦纯忠, 韦愿, 吴春凤, 王超, 孟凡刚. 复合固体碳源强化农村生活污水处理工艺脱氮性能及其功能性菌群研究[J]. 环境工程, 2022, 40(10): 62-70. doi: 10.13205/j.hjgc.202210009
引用本文: 蒋严波, 凌威, 韦纯忠, 韦愿, 吴春凤, 王超, 孟凡刚. 复合固体碳源强化农村生活污水处理工艺脱氮性能及其功能性菌群研究[J]. 环境工程, 2022, 40(10): 62-70. doi: 10.13205/j.hjgc.202210009
JIANG Yanbo, LING Wei, WEI Chunzhong, WEI Yuan, WU Chunfeng, WANG Chao, MENG Fangang. ENHANCEMENT OF COMPOSITE SOLID CARBON SOURCES ON NITROGEN REMOVAL PERFORMANCE OF A RURAL DOMESTIC SEWAGE TREATMENT PROCESS AND FUNCTIONAL BACTERIAL COMMUNITY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 62-70. doi: 10.13205/j.hjgc.202210009
Citation: JIANG Yanbo, LING Wei, WEI Chunzhong, WEI Yuan, WU Chunfeng, WANG Chao, MENG Fangang. ENHANCEMENT OF COMPOSITE SOLID CARBON SOURCES ON NITROGEN REMOVAL PERFORMANCE OF A RURAL DOMESTIC SEWAGE TREATMENT PROCESS AND FUNCTIONAL BACTERIAL COMMUNITY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 62-70. doi: 10.13205/j.hjgc.202210009

复合固体碳源强化农村生活污水处理工艺脱氮性能及其功能性菌群研究

doi: 10.13205/j.hjgc.202210009
基金项目: 

国家自然科学基金项目(51878675)

详细信息
    作者简介:

    蒋严波(1982-),男,高级工程师,主要研究方向为市政工程与水处理控制。yamboo@gxu.edu.cn

    通讯作者:

    王超(1988-),男,助理研究员,主要研究方向为污水脱氮处理技术。wangc_2018@tsinghua.org.cn

ENHANCEMENT OF COMPOSITE SOLID CARBON SOURCES ON NITROGEN REMOVAL PERFORMANCE OF A RURAL DOMESTIC SEWAGE TREATMENT PROCESS AND FUNCTIONAL BACTERIAL COMMUNITY

  • 摘要: 针对农村生活污水低碳氮比(C/N)限制反硝化脱氮效果的问题,采用复合固体碳源强化SBR工艺(SCS-SBR)对实际农村水利枢纽污水及村庄污水进行处理,并对特定功能性菌群进行深入分析,发现通过投加PHBV+秸秆复合固体碳源可以有效提高SBR工艺的反硝化能力。结果表明:SCS-SBR工艺稳定运行期出水ρ(COD)、ρ(NH4+-N)和ρ(TN)均保持在25.0,0.4,5.0 mg/L以下,其中村庄污水的TN去除率达到83.1%。微生物测序结果表明,复合固体碳源的投加促进SCS-SBR工艺筛选出特定功能性微生物。不同于传统活性污泥中的硝化细菌(Nitrosomonas)与反硝化细菌(Pseudomonas),SCS-SBR工艺中硝化功能菌主要是norank_f_JG30-KF-CM45,反硝化功能菌主要为Thermomonas和Rubrivivax,其中,Thermomonas的相对丰度在未加固体碳源阶段(AS1、AS2)未检测出(含量过低),在添加固体碳源阶段(SCS1、SCS2)其相对丰度为2.54%和7.55%。此外,活性污泥中好氧型和氧胁迫耐受型菌属Nakamurella的相对丰度由AS1、AS2中的44.52%和57.66%锐减到SCS1、SCS2中的1.06%和0.86%,表明工艺内不能利用固体碳源的微生物被逐渐淘汰。因此,PHBV+秸秆复合固体碳源在规避液体碳源缺陷的同时,能有效提高SBR工艺的反硝化能力,并对系统内功能性微生物进行有效筛选,从而为农村生活污水处理提供了理论基础和技术支持。
  • [1] 国家统计局,统计数据,中国农村统计年鉴,2020年

    [EB/OL]. http://www.stats.gov.cn/tjsj/ndsj/.
    [2] 孔令为,邵卫伟,叶红玉,等. 农村生活污水治理技术应用的浙江经验及发展方向[J]. 中国给水排水,2021,37(2):12-17.
    [3] WU Z,LIU Y,LIANG Z Y,et al. Internal cycling, not external loading, decides the nutrient limitation in eutrophic lake:a dynamic model with temporal Bayesian hierarchical inference[J]. Water Research,2017,116:231-240.
    [4] 王敏,许枫,宋小燕,等. 农村生活污水处理设施优先控制区域识别与监管策略[J]. 中国环境科学,2019,39(12):5368-5376.
    [5] 王西琴,高伟,张远. 基于控制单元的农村生活污水处理优化模型[J]. 中国环境科学,2015,35(9):2835-2842.
    [6] 中华人民共和国国家发展与改革委员. 关于推进污水资源化利用的指导意见,2021年

    [EB/OL]. https://www.ndrc.gov.cn/xxgk/jd.
    [7] 常园园,饶文中,张晓虎,等. 新型模块化MBR工艺处理农村分散污水[J]. 环境与发展,2017,29(6):119-121.
    [8] 华文才,冯益敏,朱炳泉. 地下土壤渗滤系统处理农村生活污水试验分析[J]. 华东交通大学学报,2008,25(6):6-10.
    [9] 唐抒圆. 人工湿地处理低温地区农村生活污水的工程设计与效果分析[D]. 长春:吉林大学,2014.
    [10] 何立红. 农村生活污水处理实用技术应用及研究进展[J]. 中国资源综合利用,2021,39(1):103-105.
    [11] 谢晴,王君勤,高鹏,等. "A2/O生物前处理-人工湿地"工艺在农村生活污水处理中的应用示范[J]. 四川水利,2020,41(2):86-91.
    [12] 张婷,王孟珍,曹仲. 农村一体化生活污水处理设备应用现状与发展趋势[J]. 净水技术,2021,40(增刊1):107-111.
    [13] 李昀婷,石玉敏,王俭. 农村生活污水一体化处理技术研究进展[J]. 环境工程学报,2021,11(3):499-506.
    [14] 赵远哲,董伟羊,王海燕,等. 气水比对A/O-BF处理低碳氮比农村生活污水脱氮的影响[J]. 环境科学学报,2021,41(2):451-459.
    [15] 赵远哲,杨永哲,王海燕,等. 新型填料A/O生物滤池处理低碳氮比农村污水脱氮[J]. 环境科学,2020,41(5):2329-2338.
    [16] 王超林,程伯夷,华玉妹. 农业固废碳源对三峡库区消落带土壤脱氮性能的强化作用[J]. 环境工程,2019,37(8):101-106.
    [17] KIANI S,KUJALA K,PULKKINEN J T,et al. Enhanced nitrogen removal of low carbon wastewater in denitrification bioreactors by utilizing industrial waste toward circular economy[J]. Journal of Cleaner Production,2020,254(1):119973.
    [18] LIU J J,YUAN Y,LI B K,et al. Enhanced nitrogen and phosphorus removal from municipal wastewater in an anaerobic-aerobic-anoxic sequencing batch reactor with sludge fermentation products as a carbon source[J]. Bioresource Technology,2017,244:1158-1165.
    [19] 张立秋,王登敏,李淑更,等. 固体碳源生物膜SND处理实际低碳源城市污水[J]. 工业水处理,2019,39(8):19-22

    ,106.
    [20] 唐义,马邕文,万金泉,等. 外加固体缓释碳源的两段反硝化工艺脱氮性能[J]. 环境科学,2021,42(7):3392-3399.
    [21] CHU L B, WANG J L. Denitrification of groundwater using PHBV blends in packed bed reactors and the microbial diversity[J]. Chemosphere, 2016, 155:463-470.
    [22] 徐锁洪, 施巍. 以稻壳为载体培养反硝化菌及硝酸盐氮的去除[J]. 大连交通大学学报, 2001, 22(4):99-101.
    [23] QI W, TAHERZADEH M J, RUAN Y, et al. Denitrification performance and microbial communities of solid-phase denitrifying reactors using poly (butylene succinate)/bamboo powder composite[J]. Bioresource Technology, 2020, 305:123033.
    [24] XIONG R, YU X X, YU L J, et al. Biological denitrification using polycaprolactone-peanut shell as slow-release carbon source treating drainage of municipal WWTP[J]. Chemosphere, 2019, 235:434-439.
    [25] 魏小涵,毕学军,尹志轩,等. 温度和DO对MBBR系统硝化和反硝化的影响[J]. 中国环境科学,2019,39(2):612-618.
    [26] ZHANG W J,JIN Y. Effects of Fe(Ⅱ) on N2O emissions from anammox reactors[J]. Desalination and Water Treatment,2017,63:221-226.
    [27] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社,2002.
    [28] WANG C,LIU S T,XU X C,et al. Achieving mainstream nitrogen removal through simultaneous partial nitrification, anammox and denitrification process in an integrated fixed film activated sludge reactor[J]. Chemosphere,2018,203:457-466.
    [29] 池玉蕾,石烜,任童,等. 溶解氧对低碳源城市污水处理系统脱氮性能与微生物群落的影响[J]. 环境科学,2021,42(9):4374-4382.
    [30] 朱辉翔,张树楠,彭英湘,等. 不同固体碳源释碳特征及其对反硝化脱氮效果研究[J]. 农业现代化研究,2021,42(2):206-214.
    [31] XIA L, LI X, FAN W, et al. Biological denitrification using PLA/PHBV/rice hulls composite as solid carbon source and biofilm carrier[J]. Science of the Total Environment, 2022, 803:150033.
    [32] 马切切,袁林江,牛泽栋,等. 活性污泥微生物群落结构及与环境因素响应关系分析[J]. 环境科学,2021,42(8):3886-3893.
    [33] 赵婷婷,乔凯,王蕾,等. 淀粉废水处理系统中活性污泥的微生物群落结构及多样性分析[J]. 环境科学,2020,41(1):321-329.
    [34] 陈鑫宇,王道雄,潘飞,等. 基于高通量测序的OMS-2对序批式反应器系统微生物群落的影响[J]. 环境工程学报,2020,14(1):244-252.
    [35] JIANG L Q,AN D F,ZHANG K,et al. Nakamurella albus sp. nov.:a novel actinobacterium isolated from a lichen sample[J]. Current Microbiology,2020,77(8):1896-1901.
    [36] YAN X R,CHEN M S,YANG C,et al. Nakamurella flava sp. nov., a novel endophytic actinobacterium isolated from Mentha haplocalyx Briq[J]. International Journal of Systematic and Evolutionary Microbiology,2020,70(2):835-840.
    [37] 蔡广强,张金松,刘彤宙,等. O3-BAC深度处理工艺中细菌群落时空分布及动态变化规律[J]. 环境科学学报,2020,40(11):3830-3839.
    [38] 蔡丽云,黄泽彬,须子唯,等. 处理垃圾渗滤液的SBR中微生物种群与污泥比阻[J]. 环境科学,2018,39(2):880-888.
    [39] 杨华,黄钧,赵永贵,等. 陶厄氏菌Thauera sp. strain TN9的鉴定及特性[J]. 应用与环境生物学报,2013,19(2):318-323.
    [40] HUBER K J,OVERMANN J. Vicinamibacteraceae fam. nov., the first described family within the subdivision 6 Acidobacteria[J]. International Journal of Systematic and Evolutionary Microbiology,2018,68(7):2331-2334.
    [41] WU X T,HE Y Q,LI G X,et al. Genome sequence of sulfide-dependent denitrification bacterium Thermomonas sp. Strain XSG, isolated from Marine Sediment[J]. Microbiology Resource Announcements,2021,10(15):1-2.
    [42] WARD T,LARSON J,MEULEMANS J,et al. BugBase Predicts Organism-Level Microbiome Phenotypes[M]. 2017.
    [43] 汤玥. 二苯甲酮-4的微生物脱毒降解特性及影响因素研究[D]. 上海:上海师范大学,2021.
    [44] 黄潇. 多级AO-深床滤池工艺深度处理城市污水效能及微生物特征[D]. 哈尔滨:哈尔滨工业大学,2019.
    [45] 梁伟光,黄廷林,张海涵,等. 李家河水库春季分层期nirS型反硝化菌群特征分析[J/OL]. 环境科学. https://doi.org/10.13227/j.hjkx.202104037.
    [46] WU W W,WANG L M,PENG F Q,et al. Spatiotemporal distribution and interaction of denitrifying functional genes in a novel DAS-NUA biofilter used for groundwater nitrate treatment[J]. Science of the Total Environment,2020,712:136595.
    [47] 赵晴,刘梦莹,吕慧,等. 耦合短程硝化反硝化的垃圾渗滤液厌氧氨氧化处理系统构建及微生物群落分析[J]. 环境科学,2019,40(9):4195-4201.
    [48] 张千,吉芳英,徐璇. 后置固相反硝化滤池工艺沿程微生物特性[J]. 环境科学,2018,39(4):1763-1772.
  • 加载中
计量
  • 文章访问数:  209
  • HTML全文浏览量:  10
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-28

目录

    /

    返回文章
    返回