THERMAL DECOMPOSITION LAW OF BDE-209 IN CEMENT KILN UNDER THERMAL CONDITION
-
摘要: 基于水泥窑热工条件参数,结合响应曲面设计基本原理,开展了十溴二苯醚(BDE-209)热分解规律及影响因素研究,并分析了BDE-209的脱溴路径。结果表明:烟气中多溴二苯醚(PBDEs)含量随着溴取代数降低而降低;不同PBDEs单体受不同因素影响明显,烟气中BDE-209浓度主要受样品中原始浓度和温度的影响,九溴二苯醚和八溴二苯醚浓度主要受温度和氧气交互作用的影响;结合文献研究与本实验结果推测BDE-209在水泥窑热工条件下的最主要的两条降解路径,生成九溴二苯醚的最主要路径是由BDE-209 脱去一个溴生成BDE-207;生成八溴二苯醚的最主要路径是由BDE-209 脱去一个溴生成BDE-206,再由BDE-206脱去一个溴再生成BDE-203。明确BDE-209的热分解规律及影响因素,能够为水泥窑热工条件下处置含PBDEs废物提供理论支撑。
-
关键词:
- 十溴二苯醚(BDE-209) /
- 水泥窑 /
- 响应曲面法 /
- 影响因素 /
- 分解规律
Abstract: Based on the parameters of cement kiln thermal conditions and the basic principle of response surface design, a study on the thermal decomposition law and influencing factors of BDE-209 was carried out, and the debromination path of BDE-209 was analyzed. The results showed that the content of PBDEs in flue gas decreased with the decrease of bromine substitution number. Different PBDEs monomers were significantly influenced by different factors, and the concentration of BDE-209 in the flue gas was mainly influenced by the original concentration and temperature in the sample, while the concentrations of nine and octa-BDE were mainly affected by the interaction of temperature and oxygen. Combining the literature study with the experiment results, it was assumed that the main debromination pathways of BDE-209 including two main degradation paths under the thermal conditions of the cement kiln. The main path to generate nine brominated diphenyl ether was to remove one bromine from BDE-209 to generate BDE-207. The main path to generate octabromodiphenyl ether was to remove one bromine from BDE-209 to generate BDE-206, and then remove one bromine from BDE-206 to generate BDE-203. The clarification of the thermal decomposition law of BDE-209 and the influencing factors could provide theoretical support for the disposal of waste containing PBDEs in cement kilns under thermal working conditions. -
[1] WANG S, WANG S W, SHAH S, et al. A density functional theory/time-dependent density functional theory study of the structure-related photochemical properties of hydroxylated polybrominated diphenyl ethers and methoxylated polybrominated diphenyl ethers and metal ion effects[J]. Environmental Science and Pollution Research, 2020, 27(9):9297-9306. [2] JOSE L,JUAN M A,MARIA R,et al. Assessment of POPs in air from Spain using passive sampling from 2008 to 2015. Part Ⅰ:spatial and temporal observations of PBDEs[J]. Science of the Total Environment,2018,634:1657-1668. [3] LEUNG W, ANNA O, ANTHONY S, et al. Spatial distribution of polybrominated diphenyl ethers and polychlorinated dibenzo-p-dioxins and dibenzofurans in soil and combusted residue at Guiyu, an electronic waste recycling site in southeast China[J]. Environmental Science & Technology, 2007,41 (8):2730-2737. [4] ALESSANDRA C,TANIA M,LORENZA M, et al. PBDEs in Italian sewage sludge and environmental risk of using sewage sludge for land application[J]. Environmental Pollution, 2012,161(2012):229-234 [5] 申英杰.纳米零价Fe机械化学修复POPs污染土壤技术研究[D].上海:上海第二工业大学,2021. [6] 杨柳阳,王雷,崔长颢,等.水泥窑协同处置Cr污染土壤过程中Cr的化学形态转化[J].环境工程,2021,39(10):185-190. [7] 许红霞,赵东波,丁琼.水泥窑协同处置生活垃圾焚烧飞灰的汞排放特性及管控措施探讨[J].环境工程,2017,35(9):102-105,154. [8] YANG Y F, HUSNG Q F, TANG Z W, et al. Deca-brominated diphenyl ether destruction and PBDD/F and PCDD/F emissions from coprocessing deca-BDE mixture-contaminated soils in cement kilns[J]. Environmental Science & Technology, 2012, 46(24):13409-13416. [9] 谢真.模拟水泥窑热工制度下多溴二苯醚(PBDEs)热分解规律研究[D]. 重庆:重庆交通大学,2019,7-8. [10] EBERT J. Formation of PBDD/F from flame-retarded plastic materials under thermal stress[J]. Environment International, 2004, 29(6):711-716. [11] ALTARAWNEH, SAEED, HARAHSHEH M, et al. Thermal decomposition of brominated flame retardants (BFRs):products and mechanisms[J]. Progress in Energy and Combustion Science, 2019, 70:212-259. [12] WEBER R, KUCH B. Relevance of BFRs and thermal conditions on the formation pathways of brominated and brominated-chlorinated dibenzodioxins and dibenzofurans[J]. Environment International, 2004, 29(6):699-710. [13] LI Q Q, YANG F, SU G J, et al. Thermal degradation of polybrominated diphenyl ethers over as-prepared Fe3O4 micro/nano-material and hypothesized mechanism[J]. Environmental Science & Pollution Research, 2016,23:1540-1551. [14] JIN J, WANG Y, LIU W, et al. Polybrominated diphenyl ethers in atmosphere and soil of a production area in China:levels and partitioning[J]. Journal of Environmental Sciences, 2011, 23(3):427-433. [15] 韦朝海,廖建波,刘浔,等. PBDEs的来源特征、环境分布及污染控制[J].环境科学学报,2015,35(10):3025-3041. [16] 王丽.亚铁-四聚磷酸活化分子氧高级氧化系统构建及其降解有机污染物性能研究[D].武汉:华中师范大学, 2015. [17] 赵玉坤,汪园园,籍宏伟,等. 多溴联苯醚的光催化还原脱溴[J].化学进展,2017,29(9):911-918. [18] 刘芃岩,高兰,张雅婧,等.碱性及含硫化合物对十溴联苯醚热降解的影响[J].中国环境科学,2020,40(6):2658-2663. [19] LIANG G H, LU G N, WANG R, et al. The formation pathways of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) from pyrolysis of polybrominated diphenyl ethers (PBDEs):effects of bromination arrangement and level[J]. Journal of Hazardous Materials, 2020, 399:123004. [20] 孙敬龙.城市生活垃圾焚烧过程二噁英合成机理及拟制方法实验研究[D].天津:天津大学,2012. [21] 林晓珊,吴惠勤,黄晓兰,等.十溴二苯醚的降解机理研究[J].分析测试学报,2013,32(8):993-997. [22] GRABDA M, OLESZEK-KUDLAK S, SHIBATA E, et al. Gas phase thermodynamic properties of PBDEs, PBBs, PBPs, HBCD and TBBPA predicted using DFT method[J]. Journal of Molecular Structure THEOCHEM, 2007, 822(1/2/3):38-44. [23] NOSE K, HASHIMOT S, TAKAHASHI S, et al. Degradation pathways of decabromodiphenyl ether during hydrothermal treatment[J]. Chemosphere, 2007,68(1):120-125. [24] FANG Z Q, QIU X H, CHEN J H, et al. Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles:influencing factors, kinetics, and mechanism[J]. Journal of Hazardous Materials, 2011, 185(2/3):958-969.
点击查看大图
计量
- 文章访问数: 84
- HTML全文浏览量: 14
- PDF下载量: 3
- 被引次数: 0