COMBUSTION TEMPERATURE AND EMISSION CHARACTERISTICS OF FLUE GAS POLLUTANTS OF WASTE TIRES PYROLYSIS OIL RICH IN AROMATICS
-
摘要: 清洁燃烧是各类有机固废热解油高效能源化利用的主要途径。全钢废轮胎热解油产物中芳香烃含量约占30%,其热值及黏度与柴油相似,但闪点偏低,仅为20℃。在自建燃烧炉膛中进行燃烧实验,研究了废轮胎热解油的燃烧温度及烟气排放特性。实验发现,当过量空气系数为1.3时,热解油燃烧温度最高;当过量空气系数为1.4时,烟气中CO浓度降至0;NOx浓度随着过量空气系数增大而升高;过量空气系数超过1.3后,SO2浓度大幅降低。喷射油压提升可提高燃烧温度,使热解油燃烧更加充分,同时可降低烟气中CO浓度,促进热力型NOx生成。当压力由1.5 MPa升至1.75 MPa时,燃烧温度、CO浓度与NOx浓度变化幅度最大。喷嘴喷孔直径增大会使雾化锥角增大,燃油雾束更易展开与空气接触反应,CO浓度随之降低;同时雾化锥角的增大可减小喷雾贯穿距,缩短火焰长度,减少烟气在高温区的停留时间,降低NOx浓度。Abstract: Clean combustion is the main way for the efficient energy utilization of pyrolysis oil of organic solid wastes. The content of aromatic hydrocarbons accounted for about 30% of pyrolysis oil from all-steel waste tires. The thermal value and viscosity of the pyrolysis oil were similar to that of diesel, but the flash point was much lower, only 20℃. In this study, combustion experiments were carried out in a self-designed furnace, and the characteristics of the combustion temperature and flue gas emission of pyrolysis oil were studied. It was found that the combustion temperature reached the highest when the excess air ratio was 1.3. When the excess air ratio increased to 1.4, CO content in the flue gas dropped to 0. NOx content increased with the increase of excess air ratio. When the excess air ratio exceeded 1.3, SO2 content decreased substantially. The increase of injection oil pressure could increase the combustion temperature, making the combustion more adequate, reducing CO content in the flue gas, and promoting the generation of thermal NOx. When the pressure rose from 1.5 MPa to 1.75 MPa, the combustion temperature, the CO content and the NOx content varied the most. The increase of the nozzle orifice diameter could increase the atomization cone angle, expand the oil fog to contact with the air at a larger angle, and CO content dropped accordingly. Meanwhile, the increase of atomization cone angle could reduce the spray penetration distance, which shortened the flame length and the residence time of flue gas in high-temperature area, and reduced NOx content.
-
[1] EPI Z, MIHAJLOVI V, URI S, et al. Experimental analysis of temperature influence on waste tire pyrolysis[J]. Energies, 2021,14(17):5403. [2] 史一锋. 砥砺前行中的我国轮胎行业发展状况及展望[J]. 轮胎工业,2020,40(12):707-713. [3] VESISLAVA, TOTEVA, KIRIL, et al. Waste tires pyrolysis oil as a source of energy:methods for refining[J]. Progress in Rubber, Plastics and Recycling Technology, 2019,36(2):143-158. [4] 陆王琳,金余其,池涌,等. 废轮胎热解制油技术及油品应用前景[J]. 化工进展,2007,26(1):13-17. [5] 蒋智慧,刘洋,宋永猛,等. 废旧轮胎热解及热解产物研究展望[J]. 化工进展,2021,40(1):515-525. [6] UPADHYAY, MUKESH, PARTHASARATHY, et al. Influence of process conditions on product yield of waste tyre pyrolysis:a review[J]. Korean Journal of Chemical Engineering, 2016,33(8):2268-2286. [7] JANUSZEWICZ K, KAZIMIERSKI P, KOSAKOWSKI W, et al. Waste tyres pyrolysis for obtaining limonene[J]. Materials, 2020,13(6):1359. [8] FARHADM. A review on the thennochemical recycling of waste tyres to oil for automobile engine application[J]. Energies, 2021,14(13):3837. [9] 刘海兵,付兴民,柳树成,等. 初温和终温对废轮胎热解产物分布影响[J]. 环境工程,2012,30(5):144-148. [10] CUNLIFFE A M, WILLIAMS P T. Composition of oils derived from the batch pyrolysis of tyres[J]. Journal of Analytical & Applied Pyrolysis, 1998,44(2):131-152. [11] MURUGAN S, RAMASWAMY M C, NAGARAJAN G. Performance, emission and combustion studies of a DI diesel engine using distilled tyre pyrolysis oil-diesel blends[J]. Fuel, 2008,87(10):2111-2121. [12] MURUGAN S, RAMASWAMY M C, NAGARAJAN G. The use of tyre pyrolysis oil in diesel engines[J]. Waste Management, 2008,28(12):2743-2749. [13] WILLIAMS P T, BOTTRILL R P, CUNLIFFE A M. Combustion of tyre pyrolysis oil[J]. Process Safety & Environmental Protection, 1998,76(4):291-301. [14] 裴宜星. 废轮胎回转窑热解油的应用研究[D]. 杭州:浙江大学,2006. [15] 中国环境科学研究院. 火电厂大气污染物排放标准:GB 13223-2011[M]. 北京:中国环境科学出版社,2012. [16] PAN Y H, SIMA J Y, WANG X W, et al. BTEX recovery from waste rubbers by catalytic pyrolysis over Zn loaded tire derived char[J]. Waste Management, 2021,131:214-225. [17] 郑璐恺,朱彦澄,周亚波. 芳香烃种类及含量对航空发动机燃烧的排放影响[J]. 航空动力学报,2021,36(6):1244-1252. [18] 胡园园,王志荣,黄天一. 多组分可燃液体闪点的实验研究[J]. 工业安全与环保,2010,36(5):57-59. [19] 刘庆磊. 高粘生物质焦油进料喷嘴的数值模拟及实验研究[D]. 济南:山东大学,2013. [20] 郝斌. 不同燃料对柴油机排气颗粒物的影响研究[D]. 天津:天津大学,2014. [21] 余鹏,姚宗路,胡乃涛,等. 生物质固体成型燃料NO<em>x排放规律研究现状[J]. 环境工程,2015,33(增刊1):495-498. [22] VELMURUGAN K, SATHIYAGNANAM A P. Effect of biodiesel fuel properties and formation of NO<em>x emissions:a review[J]. International Journal of Ambient Energy, 2017,38(5/6/7/8):644-651. [23] 金维平. 燃料型NO<em>x的生成机理及控制措施[J]. 中国科技信息,2005(22A):17,26. [24] 艾国红. 锅炉主要污染物形成机理分析[J]. 中国高新技术企业,2010(9):85-87. [25] SUN J F, CATON J A, JACOBS T J. Oxides of nitrogen emissions from biodiesel-fuelled diesel engines[J]. Progress in Energy & Combustion Science, 2010,36(6):677-695. [26] WILLIAMS P T, BOTTRILL R P. Sulphur-polycyclic aromatic hydrocarbons in tyre pyrolysis oil[J]. Fuel, 1995,74(1):736-742. [27] 马锐,宋永一,张庆军,等.船用残渣型燃料油脱硫技术进展[J].石油化工高等学校学报,2021,34(1):15-21. [28] 伏军,王振,袁文华,等. 喷射压力对生物柴油喷雾特性的影响[J]. 邵阳学院学报(自然科学版),2020,17(3):50-60. [29] GENG L M, WANG Y J, WANG Y Y, et al. Effect of the injection pressure and orifice diameter on the spray characteristics of biodiesel[J]. Journal of Traffic and Transportation Engineering, 2020,7(3):331-339. [30] 王鹏里. 喷嘴喷孔结构参数对甲醇燃料雾化特性的影响研究[D]. 太原:太原理工大学,2018. [31] 杨家俊,张冰洁,刘定平. 螺旋喷嘴雾化特性试验研究[J]. 环境工程,2013,31(5):71-74.
点击查看大图
计量
- 文章访问数: 122
- HTML全文浏览量: 25
- PDF下载量: 2
- 被引次数: 0