EXPERIMENTAL STUDY ON ELECTROTHERMAL BEHAVIORS OF ACTIVATED CARBON FIBER MESH ADSORPTION BED
-
摘要: 电热再生是一种效率高、通用性强、能耗低的活性炭材料再生方式,备受挥发性有机化合物治理、室内空气净化及化学防护领域的关注。以活性炭纤维网装填吸附床为研究对象,系统研究了通电电压、吹扫气流比速以及床层吸水率对吸附床电热行为的影响。结果表明:以50 V电压为干燥床层输入1 W·h电能,床层温度可升至144.6℃,与20 V通电电压相比,温度提升了63.8℃;增大吹扫气流比速可降低床层电热过程结束时的温度,并延长通电加热的时间;吸水床层在电热期间出现升温平台,在通电电压为40 V、吹扫气流比速为0.08 L/(min·cm2)条件下,根据吸水率的不同,升温平台最长可持续30 min。此外,通电电压和吹扫气流均能影响升温平台对应的温度和持续时间。Abstract: Electrothermal regeneration is a kind of activated carbon material regeneration method with a short treating time, strong versatility and low energy consumption, and it has attracted much attention in the field of volatile organic compounds treatment, indoor air purification and chemical protection. In this paper, we used activated carbon fiber mesh to fill the adsorption bed, and systematically studied the effects of energizing voltage, specific velocity of purge gas, and bed water adsorption on the electrothermal behavior of the adsorption bed. The results showed that:setting the energizing voltage to 50 V and inputting 1 W·h electrical energy for the drying bed, the bed could rise to 144.6℃, which was 63.8℃ higher than that at 20 V. Increasing the specific velocity of purge gas reduced the temperature at the end of the electrothermal process and prolong the heating time. There was a temperature rise platform in the water adsorption bed during electric heating. Under the conditions of a voltage of 40 V and a specific speed of purge gas flow of 0.08 L/(min·cm2), the heating platform could last up to 30 minutes according to different water adsorption rates. In addition, the energizing voltage and purge gas could affect the temperature and duration of the heating platform.
-
[1] WANG Y H, BAYATPOURR S, QIAN X, et al. Activated carbon fibers via reductive carbonization of cellulosic biomass for adsorption of nonpolar volatile organic compounds[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2020, 612:125908. [2] LI J J, MA X W, WU H, et al. Adsorption of low-concentration VOCs on modified activated carbons in a humid atmosphere[J]. Energy & Fuels, 2021, 35(6):5090-5100. [3] BAYTAR O, AHIN M, HOROZ S, et al. High-performance gas-phase adsorption of benzene and toluene on activated carbon:response surface optimization, reusability, equilibrium, kinetic and competitive adsorption studies[J]. Environmental Science and Pollution Research, 2020, 27:26191-26210. [4] YAO M. Removal of volatile organic compounds from indoor air using regenerative activated carbon fiber cloth[M]. Michigan Technological University, 2008. [5] HUANG Y C, LUO C H, YANG S, et al. Improved removal of indoor volatile organic compounds by activated carbon fiber filters calcined with copper oxide catalyst[J]. Clean-Soil, Air, Water, 2010, 38(11):993-997. [6] 程代云, 史喜成. 集体防护装备技术基础[M]. 北京:国防工业出版社, 2008. [7] BHUIYAN M, WANG L J, SHAID A, et al. Advances and applications of chemical protective clothing system[J]. Journal of Industrial Textiles, 2019, 49(1):97-138. [8] SULLIVAN P D, STONE B R. Performance assessment of bench-scale electrothermal swing adsorption protective filter systems[R]. Applied Research Associates Inc Tyndall Afb Fl, 2010. [9] 万月亮, 赵梦醒, 王燕燕, 等. 吸附有机气体饱和废活性炭热再生的实验效果[J]. 天津科技大学学报, 2020, 35(3):46-51. [10] GUO Y Q, DU E D. The Effects of thermal regeneration conditions and inorganic compounds on the characteristics of activated carbon used in power plant[J]. Energy Procedia, 2012, 17:444-449. [11] 邹吕熙,王燕,陈亚丽,等. 利用过热蒸汽再生不同吸附饱和度的活性炭[J]. 环境工程学报, 2020, 14(10):86-94. [12] 刘勇弟, 高勇, 袁渭康. 超临界流体活性炭再生技术[J]. 化工进展, 1999(1):47-48. [13] RECASANS F, MCCOY B J, SMITH J M. Desorption processes:supercritical fluid regeneration of activated carbon[J]. AIChE Journal, 2010, 35(6):951-958. [14] EL GAMAL M, MOUSA H A, EL-NAAS M H, et al. Bio-regeneration of activated carbon:a comprehensive review[J]. Separation and Purification Technology, 2018, 197:345-359. [15] SRIVASTAVA A, GUPTA B, MAJUMDER A, et al. A comprehensive review on the synthesis, performance, modifications, and regeneration of activated carbon for the adsorptive removal of various water pollutants[J]. Journal of Environmental Chemical Engineering, 2021,9(5):106177. [16] BERENGUER R, MARCO-LOZAR J P, QUIJADA C, et al. Electrochemical regeneration and porosity recovery of phenol-saturated granular activated carbon in an alkaline medium[J]. Carbon, 2010, 48(10):2734-2745. [17] 李碟, 卢钧, 刘晓琛, 等. 饱和粉末活性炭电化学再生研究[J]. 环境污染与防治, 2020, 42(4):417-421. [18] 王慧娟, 依成武, 刘永杰, 等. 气液混合脉冲放电等离子体再生活性炭系统优化研究[J]. 环境工程学报, 2015, 9(7):3579-3584. [19] 康凯, 白书培, 宋华, 等. 吸附材料的低温等离子体再生法研究进展[J]. 化工进展, 2016, 35(增刊1):235-241. [20] SALVADOR F, JIMENEZ C S. A new method for regenerating activated carbon by thermal desorption with liquid water under subcritical conditions[J]. Carbon, 1996, 34(4):511-516. [21] CLOIREC P L. Adsorption onto activated carbon fiber cloth and electrothermal desorption of volatile organic compound (VOCs):a specific review[J]. Chinese Journal of Chemical Engineering, 2012, 20(3):461-468. [22] FABUSS B M, DUBOIS W H. Carbon adsorption-electrodesorption process[C]//63rd Annual Meeting of the Air Pollution Control Association, St. Louis, MO. 1970, 18:68. [23] 赵海洋,卢晗锋,姜波,等. 挥发性有机物在活性炭纤维上的吸附和电致热脱附[J]. 中国环境科学, 2016, 36(7):1981-1987. [24] MOON S H, SHIM J W. A novel process for CO2/CH4 gas separation on activated carbon fibers-electric swing adsorption[J]. Journal of Colloid and Interface Science, 2006, 298(2):523-528. [25] LI J J, LU R J, DOU B J, et al. Porous graphitized carbon for adsorptive removal of benzene and the electrothermal regeneration[J]. Environmental Science & Technology, 2012, 46(22):12648-12654. [26] FENG D Y, LUO L, GREVILLOT G. Electrothermal swing adsorption of toluene on an activated carbon monolith:experiments and parametric theoretical study[J]. Chemical Engineering & Processing Process Intensification, 2007, 46(1):70-81. [27] YU F D, LUO L A, GREVILLOT G. Electrothermal desorption using joule effect on an activated carbon monolith[J]. Journal of Environmental Engineering, 2004, 130(3):242-248. [28] SNYDER J D, LEESCH J G. Methyl bromide recovery on activated carbon with repeated adsorption and electrothermal regeneration[J]. Industrial & Engineering Chemistry Research, 2001, 40(13):2925-2933. [29] GIRAUDET S, BOULINGUIEZ B, CLORIEC P L. Adsorption and electrothermal desorption of VOCs and siloxanes onto activated carbon fiber cloth for biogas purification[J]. Energy & Fuels, 2014, 28(6):3924-3932. [30] ZOU N, NIE Q, ZHANG X R, et al. Electrothermal regeneration by Joule heat effect on carbon cloth based MnO2 catalyst for long-term formaldehyde removal[J]. Chemical Engineering Journal, 2019, 357:1-10. [31] DOWNAROWICZ D, K KOWALSKI. Electrothermal regeneration of BPL activated carbon:possibilities for improvement of process efficiency[J]. Chemical Papers, 2020, 74(6):1945-1956. [32] 宋彦龙, 张忠良, 游俊琴, 等. 活性炭电加热再生技术应用于有机溶剂回收[J]. 环境工程, 2009, 27(增刊1):308-310. [33] SULLIVAN P D, ROOD M J, HAY K J, et al. Adsorption and electrothermal desorption of hazardous organic vapors[J]. Journal of Environmental Engineering, 2001, 127(3):217-223. [34] SULLIVAN P D, ROOD M J, GREVILLOT G, et al. Activated carbon fiber cloth electrothermal swing adsorption system[J]. Environmental Science & Technology, 2004, 38(18):4865-4877. [35] 周平, 张忠良, 游俊琴, 等. 活性炭纤维织物床层对乙酸乙酯的动态吸附[J]. 新型炭材料, 2019, 34(4):325-332. [36] LUO L G, RAMIREZ D, ROOD M J, et al. Adsorption and electrothermal desorption of organic vapors using activated carbon adsorbents with novel morphologies[J]. Carbon, 2006, 44(13):2715-2723. [37] SULLIVAN P D, WANDER J D, NEWSOME K C. Electrothermal desorption of CWA simulants from activated carbon cloth[R]. Air Force Research Lab Tyndall Afb Fl, 2004. [38] LIU L M, TAN S J, HORIKAWA T, et al. Water adsorption on carbon:a review[J]. Advances in Colloid and Interface Science, 2017, 250:64-78. [39] 郑超, 康凯, 周术元, 等. 水分子在多孔炭材料上的吸附行为研究进展[J]. 化工进展, 2020, 40(7):3803-3812. [40] SULLIVAN P D. Organic vapor recovery using activated carbon fiber cloth and electrothermal desorption[D]. University of Illinois at Urbana-Champaign, 2003. [41] VITTORIO S, DRESSELHAUS M S, ENDO M, et al. Transport properties of activated carbon fibers[J]. Journal of Materials Research, 1991, 6(4):778-783. [42] KURIYAMA K,DRESSELHAUS M S. Photoconductivity of activated carbon fibers[J]. Journal of Materials Research, 1991, 6(5):1040-1047.
点击查看大图
计量
- 文章访问数: 124
- HTML全文浏览量: 30
- PDF下载量: 1
- 被引次数: 0