ENGINEERING APPLICATION OF SAFE UTILIZATION TECHNOLOGY OF CADMIUM POLLUTED WHEAT FIELD IN SEWAGE IRRIGATION AREAS
-
摘要: 为探索工程改良、植物修复、钝化修复、拮抗修复、钝化-拮抗修复技术在污灌区镉(Cd)污染麦田安全利用工程中的应用效果,研究了上述5类技术在河南省某典型污灌区应用后小麦籽粒Cd含量、土壤Cd含量和小麦Cd富集程度。结果表明:拮抗-钝化单一或复合修复可通过影响小麦籽粒Cd的富集和土壤Cd含量来降低小麦受重金属Cd的污染,如施用适量磷基+铁基矿物复合材料可降低38%小麦籽粒Cd含量,施用适量磷基矿物材料B小麦籽粒Cd含量可降低27%~48%,2种处理修复效果显著;其他技术虽有一定修复效果,但并不显著。小麦Cd富集系数(PUFCd)可作为评价污灌区Cd污染麦田安全利用工程中技术应用效果的参考指标之一。Abstract: In order to explore the application effect of engineered modification, phytoremediation, passivation remediation, antagonism remediation, and the passivation-antagonism remediation technology at safe utilization project of cadmium polluted wheat field in sewage irrigation areas, we studied the wheat grain Cd content, soil Cd content and degree of wheat Cd enrichment after the 5 kinds of techniques applied in a typical sewage irrigation area in Henan. The results showed that:a single or composite treatment of passivation and antagonism could remediate the pollution of Cd in wheat by affecting the enrichment of Cd in wheat grain and the content of Cd in soil; Cd content in wheat grain was significantly reduced by 38% after appropriate application of phosphorus A or B and iron material composites, and the Cd content was significantly reduced by 27% to 48% after appropriate application of phosphorus materials B in wheat grain, and both restorative effects were remarkable; other techniques had some restorative effect, but not significant. The Cd enrichment coefficient of wheat (PUFCd) could be used as one indicating index to evaluate the effect of technology application on cadmium polluted wheat field safe utilization project in the sewage irrigation area.
-
[1] 环境保护部,国土资源部.全国土壤污染状况调查公报[R],2014. [2] 郑影怡,刘杰,蒋萍萍,等.河池市某废弃冶炼厂周边农田土壤重金属污染特征及风险评价[J].环境工程,2021,39(5):238-245. [3] 叶赛克.Cd污染农田土壤钝化剂的筛选及修复效果研究[D].扬州:扬州大学,2017. [4] 王帝伟,刘祎丹,易春辉,等.改性纳米二氧化硅对Cd污染农田土壤的钝化修复[J].环境化学,2019,38(5):1106-1112. [5] FENG Y, YANG J J, LIU W, et al. Hydroxyapatite as a passivator for safe wheat production and its impacts on soil microbial communities in a Cd-contaminated alkaline soil[J]. Journal of Hazardous Materials, 2021, 404:124005. [6] 任树友,杨方超.轻度镉污染土壤上不同小麦品种间籽粒镉富集及产量差异研究[J].四川农业科技,2020(12):42-44. [7] LI J, ZHANG P Y, YE J P, et al. Simultaneous in-situ remediation and fertilization of Cd-contaminated weak-alkaline farmland for wheat production[J]. Journal of Environmental Management, 2019, 250:109528. [8] 刘伟,张永波,贾亚敏.重金属污染农田植物修复及强化措施研究进展[J].环境工程,2019,37(5):29-44. [9] 陆英,肖满,张文辉,等.八宝景天-小麦轮作修复重金属污染土壤的工程案例[J].环境生态学,2020,2(8):74-81. [10] 王娟,苏德纯.基于文献计量的小麦玉米重金属污染农田修复治理技术及效果分析[J].农业环境科学学报,2021,40(3):493-500. [11] 马铁铮,马友华,徐露露,等.农田土壤重金属污染的农业生态修复技术[J].农业资源与环境学报,2013,30(5):39-43. [12] 刘意竹.陕西省潼关矿区农田土壤重金属Cd污染修复技术研究[D].西安:长安大学,2016. [13] 土壤环境质量 农用地土壤污染风险管控标准(试行):GB 15618-2018[S].北京:生态环境部,2018. [14] 韩晋仙. 开封市化肥河污灌区土壤-小麦系统重金属污染及其迁移[D].郑州:河南大学,2003. [15] 食品安全国家标准 食品中污染物限量:GB 2762-2017[S].北京:国家卫生和计划生育委员会,2017. [16] 肥料中有毒有害物质的限量标准:GB 38400-2019[S].北京:国家市场监督管理总局,2019. [17] 食品安全国家标准 食品中镉的测定:GB 5009.15-2014[S].北京:国家卫生和计划生育委员会,2015. [18] 土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法:GB/T 17141-1997[S].北京:国家环境保护总局,1998. [19] 农用地土壤环境质量类别划分技术指南(试行):环办土壤 [20] 李艳玲,陈卫平,杨阳,等.济源市平原区农田重金属污染特征及综合风险评估[J].环境科学学报,2020,40(6):2229-2236. [21] NIAZ A, ALI R S, SUBHAN D, er al. Immobilization of Cd in soil by biochar and new emerging chemically produced carbon[J]. Journal of King Saud University-Science, 2021, 33(5):101472. [22] 赵永芹.不同钝化剂对石灰性土壤重金属形态转化和植物吸收的影响[D].郑州:河南农业大学,2019. [23] 张江生.有色金属矿区污染土壤中重金属化合固定研究[D].长沙:中南大学,2014. [24] 钱海燕,王兴祥,黄国勤.钙镁磷肥和石灰对受Cu、Zn污染的菜园土壤的改良作用[J].农业环境科学学报,2007,26(1):235-239. [25] 梁学峰,徐应明,王林,等.天然黏土联合磷肥对农田土壤镉铅污染原位钝化修复效应研究[J].环境科学学报,2011,31(5):1011-1018. [26] 王海鸥,刘杰民,弓爱君,等.施加磷元素后对小麦抗重金属铜毒性的影响[J].环境污染治理技术与设备,2006,7(5):54-59. [27] 施尧,曹心德,魏晓欣,等.含磷材料钝化修复重金属Pb、Cu、Zn复合污染土壤[J].上海交通大学学报(农业科学版),2011,29(3):62-68. [28] 刘恒博,雍毅,刘政,等.几种安全利用措施对成都平原镉污染农田风险管控效果比较[J].环境工程,2021,39(6):167-172. [2017] 第97号[S].北京:环境保护部办公厅,2018.
点击查看大图
计量
- 文章访问数: 104
- HTML全文浏览量: 17
- PDF下载量: 3
- 被引次数: 0