DIOXIN EMISSION CHARACTERISTICS OF A NOVEL 30 t/d VILLAGE AND TOWN-SCALE SOLID WASTES GASIFICATION SYSTEM
-
摘要: 针对目前处置村镇垃圾的小型热处理炉运行不稳定、排放难以达标等问题,介绍了一种新型村镇垃圾热解气化炉(30 t/d),并对其系统烟气及炉渣的二噁英生成排放特性进行研究。结果表明:炉渣中的二噁英浓度为0.723 μg I-TEQ/kg,可满足GB 16889-2008《生活垃圾填埋场污染控制标准》中二噁英排放的要求;在正常喷射活性炭时尾部烟气二噁英浓度为0.029 ng I-TEQ/Nm3,低于GB 18485-2014《生活垃圾焚烧污染控制标准》中二噁英排放限值;气化燃烧过程的烟气二噁英原始排放浓度较低,低温异相合成反应是该垃圾炉烟气二噁英的主要来源;在质量浓度分布上占优势的为高氯代PCDD/Fs,对总毒性当量起主导作用的为2,3,4,7,8-PeCDF,喷射活性炭对二噁英具有良好的去除效果。以期为村镇垃圾热解气化规范处置提供示范,并为热解气化炉二噁英排放控制提供参考。Abstract: Aiming at the problems of unstable operation and unqualified emission of small heat treatment furnaces for the disposal of rural domestic wastes, a new type of pyrolysis gasification incinerator for rural solid wastes was introduced, and the dioxins emission characteristics of flue gas and slag in a novel 30 t/d solid wastes gasification system were studied. The results were as follows:the emission of dioxin from slag was 0.723 μg I-TEQ/kg, which met the requirements of Standard of Pollution Control on the Landfill Site of Municipal Solid Waste (GB 16889-2008). When spraying activated carbon normally, the concentration of dioxin in tail flue gas was 0.029 ng I-TEQ/Nm3, lower than the dioxin emission limitation of Standard for Pollution Control on the Municipal Solid Waste Incineration (GB 18485-2014). The original emission concentration of dioxin from flue gas in the gasification and combustion process was low, and low-temperature heterogeneous synthesis reaction was the main source of dioxin in flue gas of the furnace. Furthermore, high chlorinated PCDD/Fs was dominant in mass concentration distribution, and 2,3,4,7,8-PeCDF played an important role in total toxic equivalent. Besides, spraying activated carbon had a good removal effect on dioxins. This study provided a demonstration for the standardized disposal of pyrolysis and gasification for rural domestic wastes, and a reference for dioxin emission control of the pyrolysis and gasification furnace.
-
Key words:
- pyrolysis /
- gasification /
- domestic waste /
- dioxins /
- emission characteristics
-
[1] 席北斗, 侯佳奇. 我国村镇垃圾处理挑战与对策[J]. 环境保护, 2017,45(14):7-10. [2] 袁国安. 生活垃圾热解气化技术应用现状与展望[J]. 环境与可持续发展, 2019,44(4):66-69. [3] 徐善宝, 陕永杰, 王丽君, 等. 我国村镇生活垃圾热解气化技术的研究应用现状、问题与对策[C]//2017中国环境科学学会科学与技术年会, 中国福建厦门, 2017. [4] 雷鸣. 小型农村生活垃圾热处理炉二噁英及重金属的排放特性及控制研究[D]. 广州:华南理工大学, 2017. [5] 环境保护部,国家质量监督检验检疫总局. 生活垃圾焚烧污染控制标准:GB 18485-2014[S].北京:中国环境科学出版社,2014. [6] 中华人民共和国住房和城乡建设部. 生活垃圾采样和分析方法:CJ/T 313-2009[S].北京:中国标准出版社,2009. [7] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 煤的发热量测定方法:GB/T 213-2008[S]. 北京:中国质检出版社,2008. [8] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 煤的元素分析:GB/T 31391-2015[S]. 北京:中国标准出版社,2015. [9] 林晓青, 李晓东, 陆胜勇, 等. 垃圾焚烧炉二噁英排放特性与减排技术展望[J]. 热能动力工程, 2015,30(3):329-332. [10] 俞明锋, 付建英, 詹明秀, 等. 生活废弃物焚烧处置烟气中二噁英排放特性研究[J]. 环境科学学报, 2018,38(5):1983-1988. [11] CHEN T, LI X D, YAN J H, et al. Distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans in ambient air of different regions in China[J]. Atmospheric Environment, 2011,45(36):6567-6575. [12] 张刚. 城市固体废物焚烧过程二噁英与重金属排放特征及控制技术研究[D]. 广州:华南理工大学, 2013. [13] MCKAY G. Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration:review[J]. Chemical Engineering Journal, 2002,86(3):343-368. [14] STANMORE B R. The formation of dioxins in combustion systems[Z]. Combustion & Flame, 2004, 136:398-427. [15] ALTWICKER E R. Some laboratory experimental designs for obtaining dynamic property data on dioxins[J]. Science of the Total Environment, 1991,104(1/2):47-72. [16] HUANG H, BUSKENS A. Comparison of dioxin formation levels in laboratory gas-phase flow reactors with those calculated using the Shaub-Tsang mechanism[J]. Chemosphere, 1999,38(7):1595-1602. [17] WEBER R, HAGENMAIER H. Mechanism of the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans from chlorophenols in gas phase reactions[J]. Chemosphere, 1999,38(3):529-549. [18] ADDINK R, OLIE K. Mechanisms of formation and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans in heterogeneous systems[J]. Environmental Science & Technology, 1995,29(6):1425-1435. [19] MATZING H. A simple kinetic model of PCDD/F formation by de novo synthesis[J]. Chemosphere, 2001,44(6):1497-1503. [20] 曹玉春, 严建华, 李晓东, 等. 垃圾焚烧炉中二噁英生成机理的研究进展[J]. 热力发电, 2005,34(9):15-20,14. [21] ZHANG H J, NI Y W, CHEN J P, et al. Influence of variation in the operating conditions on PCDD/F distribution in a full-scale MSW incinerator[J]. Chemosphere, 2008,70(4):721-730. [22] 孙敬龙. 城市生活垃圾焚烧过程二噁英合成机理及拟制方法实验研究[D]. 天津:天津大学, 2012. [23] 环境保护部,国家质量监督检疫总局. 生活垃圾填埋场污染控制标准:GB 16889-2008[S].北京:中国环境科学出版社,2008. [24] 张海军, 倪余文, 张雪萍, 等. 城市生活垃圾焚烧系统中二噁英的生成与质量平衡[J]. 环境科学, 2008,29(4):1133-1137. [25] ZHANG G, HAI J, CHENG J. Characterization and mass balance of dioxin from a large-scale municipal solid waste incinerator in China[J]. Waste Management, 2012,32(6):1156-1162. [26] ZHOU H, MENG A H, LONG Y Q, et al. A review of dioxin-related substances during municipal solid waste incineration[J]. Waste Management, 2015,36:106-118. [27] 王天娇. 生活垃圾焚烧过程中二噁英及其关联物氯苯的特性研究[D]. 杭州:浙江大学, 2018. [28] 陈宋璇, 黎小保. 生活垃圾焚烧发电中二噁英控制技术研究进展[J]. 环境科学与管理, 2012,37(5):89-93. [29] BABUSHOK V I, TSANG W. Gas-phase mechanism for dioxin formation[J]. Chemosphere, 2003,51(10):1023-1029. [30] HUANG H, BUEKENS A. On the mechanisms of dioxin formation in combustion processes[J]. Chemosphere, 1995,31(9):4099-4117. [31] 雷鸣, 海景, 卢加伟, 等. 上吸式固定床气化炉处理生活垃圾时二噁英的形成与迁移[J]. 华南理工大学学报(自然科学版), 2017,45(11):139-146. [32] EVERAERT K, BAEYENS J. The formation and emission of dioxins in large scale thermal processes[J]. Chemosphere, 2002,46(3):439-448. [33] ANDERSSON S, KREISZ S, HUNSINGER H. Dioxin removal:adiox for wet scrubbers and dry absorbers[Z]. Filtration and Separation, 2005, 42:22-25. [34] CHOI K, LEE D, OSAKO M, et al. The prediction of PCDD/DF levels in wet scrubbers associated with waste incinerators[J]. Chemosphere, 2007,66(6):1131-1137. [35] 籍龙杰, 郭颖, 陈彤, 等. 不同热处置生活垃圾烟气中二噁英的排放[J]. 热能动力工程, 2016,31(9):94-99.
点击查看大图
计量
- 文章访问数: 97
- HTML全文浏览量: 12
- PDF下载量: 4
- 被引次数: 0