RESEARCH PROGRESS ON PYROLYSIS KINETICS OF ORGANIC WASTE
-
摘要: 热解技术是将有机固废转化为能源的一种有效手段。有机固废热解动力学是对固废热解的反应机理、反应速率的数学表达式以及影响因素的研究,对于有机固废热解结果的预测以及其热解装置的设计和模拟有着重要意义。重点提供了有机固废热解动力学的研究概述,总结了计算有机固废热解反应速率的数学表达式的各种模型和方法,及其应用情况和优缺点;总结了近些年对有机固废热解动力学参数的影响因素的研究,发现转化率、添加剂、原料组分等因素都会影响有机固废热解动力学参数,可为有机固废热解的应用提供参考。Abstract: Waste pyrolysis technology is an effective mean to convert waste into energy. Waste pyrolysis kinetics is the study on the reaction mechanism of waste pyrolysis, the mathematical expressions of the reaction rate, and the influencing factors. The study of waste pyrolysis kinetics is of great significance for the prediction of waste pyrolysis results and the design and simulation of waste pyrolysis equipment. This article aims to provide an overview of the research on waste pyrolysis kinetics, mainly summarizing various models and methods for calculating mathematical expressions for waste pyrolysis reaction rates, and describing the applications, advantages, and disadvantages of these methods. Moreover, this article summarizes the research on the factors influencing the kinetic parameters of waste pyrolysis in recent years. It is found that factors including conversion rate, additives, and feedstock components, affect waste pyrolysis kinetic parameters and are of great help for the application of waste pyrolysis.
-
Key words:
- waste /
- pyrolysis /
- kinetic model /
- activation energy /
- pre-exponential factor
-
[1] ROBERTS A F. A review of kinetics data for the pyrolysis of wood and related substances[J]. Combustion and Flame, 1970, 2(14):261-272. [2] LIN K, WANG H P, LIU S H, et al. Pyrolysis kinetics of refuse-derived fuel[J]. Fuel Processing Technology, 1999, 60:103-110. [3] TOKMURZIN D, KUSPANGALIYEVA B, AIMBETOV B, et al. Characterization of solid char produced from pyrolysis of the organic fraction of municipal solid waste, high volatile coal and their blends[J]. Energy, 2020, 191:116562. [4] DING K, XIONG Q G, ZHONG Z P, et al. CFD simulation of combustible solid waste pyrolysis in a fluidized bed reactor[J]. Powder Technology, 2020, 362:177-187. [5] COATS A W, REDFERN J. Kinetic parameters from thermogravimetric data[J]. Nature, 1964, 201:68-69. [6] KISSINGER H E. Variation of peak temperature with heating rate in differential thermal analysis[J]. Journal of Research of the National Bureau of Standards, 1956, 57(4):217-221. [7] KISSINGER E H. Reaction Kinetics in Differential Thermal Analysis[J]. 1957, 29:1702-1706. [8] FLYNN WALL J H A. A quick, direct method for the determination of activation energy from thermogravimetric data[J]. Polymer Letters, 1966, 4:323-328. [9] STARINK J M. A new method for the derivation of activation energies from experiments performed at constant heating rate[J]. Thermochimica Acta, 1996, 288(1/2):97-104. [10] DOYLE C D. Series approximations to the equation of thermogravimetric data[J]. Nature, 1965, 207:290-291. [11] TANG W J, LIU Y W, ZHANG H, et al. New approximate formula for Arrhenius temperature integral[J]. Thermochimica Acta, 2003, 408(1):39-43. [12] SENUM G I, YANG R T. Rational approximations of the integral of the Arrhenius function[J]. Journal of Thermal Analysis, 1977, 11:445-447. [13] FRIEDMAN H L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. application to a phenolic plastic[J]. Journal of Polymer Science Part C:Polymer Symposia, 1964, 1(6):183-195. [14] GUAN Y P, LIU C Q, PENG Q F, et al. Pyrolysis kinetics behavior of solid leather wastes[J]. Waste Management, 2019, 100:122-127. [15] NISAR J, ALI G, SHAH A, et al. Fuel production from waste polystyrene via pyrolysis:kinetics and products distribution[J]. Waste Management, 2019, 88:236-247. [16] VAMVUKA D, KAKARAS E, KASTANAKI E, et al. Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite[J]. Fuel, 2003, 82(15):1949-1960. [17] ROSTAMI A A, HAJALIGOL M R, WRENN S E. A biomass pyrolysis sub-model for CFD applications[J]. Fuel, 2004, 83(11):1519-1525. [18] CAI J M, WU W X, LIU R H. An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass[J]. Renewable and Sustainable Energy Reviews, 2014, 36:236-246. [19] SUUBERG E M. Approximate solution technique for non-isothermal, Gaussian distributed activation-energy models[J]. Combust Flame, 1983, 50(24):3-6. [20] DU Z Y, SAROFIM A F, LONGWELL J P. Activation-energy distribution in temperature-programmed desorption-modeling and application to the soot-oxygen system[J]. Energy & Fuels, 1990, 4:296-302. [21] DONSKOI E, MCELWAIN D L S. Optimization of coal pyrolysis modeling[J]. Combustion and Flame. 2000, 122(3):359-367. [22] FERNANDEZ A, SAFFE A, PEREYRA R, et al. Kinetic study of regional agro-industrial wastes pyrolysis using non-isothermal TGA analysis[J]. Applied Thermal Engineering, 2016, 106:1157-1164. [23] HU D H, CHEN M Q, HUANG Y W, et al. Evaluation on isothermal pyrolysis characteristics of typical technical solid wastes[J]. Thermochimica Acta, 2020, 688:178604. [24] 王景巍,张曼玲,薛伟. 李子和梨树枝条的热解特性及动力学分析[J]. 消防科学与技术, 2019, 38(3):341-344. [25] TIAN B, WANG X R, ZHAO W Y, et al. Pyrolysis behaviors, kinetics and gaseous product evolutions of two typical biomass wastes[J]. Catalysis Today, 2021,374:77-85. [26] NG Q H, CHIN B L F, YUSUP S, et al. Modeling of the co-pyrolysis of rubber residual and HDPE waste using the distributed activation energy model (DAEM)[J]. Applied Thermal Engineering, 2018, 138:336-345. [27] CHEN L, WANG S Z, MENG H Y et al. Synergistic effect on thermal behavior and char morphology analysis during co-pyrolysis of paulownia wood blended with different plastics waste[J]. Applied Thermal Engineering, 2017, 111:834-846. [28] LIU G C, LIAO Y F, GUO S D, et al. Thermal behavior and kinetics of municipal solid waste during pyrolysis and combustion process[J]. Applied Thermal Engineering, 2016, 98:400-408. [29] CHHABRA V, BHATTACHARYA S, SHASTRI Y. Pyrolysis of mixed municipal solid waste:characterisation, interaction effect and kinetic modelling using the thermogravimetric approach[J]. Waste Management, 2019, 90:152-167. [30] TOKMURZIN D, KUSPANGALIYEVA B, AIMBETOV B, et al. Characterization of solid char produced from pyrolysis of the organic fraction of municipal solid waste, high volatile coal and their blends[J]. Energy, 2020, 191:116562. [31] LIU H R, CHEN B, WANG C J. Pyrolysis kinetics study of biomass waste using Shuffled Complex Evolution algorithm[J]. Fuel Processing Technology, 2020, 208:106509. [32] TANG F F, YU Z S, LI Y, et al. Catalytic co-pyrolysis behaviors, product characteristics and kinetics of rural solid waste and chlorella vulgaris[J]. Bioresource Technology, 2020, 299:122636. [33] HAMMAD SIDDIQI U K S B. A synergistic study of reaction kinetics and heat transfer with multicomponentmodelling approach for the pyrolysis of biomass waste[J]. Energy, 2020, 204:117933. [34] MENARES T, HERRERA J, ROMERO R, et al. Waste tires pyrolysis kinetics and reaction mechanisms explained by TGA and Py-GC/MS under kinetically-controlled regime[J]. Waste Management, 2020, 102:21-29. [35] CHEN R J, ZHANG J H, LUN L Y, et al. Comparative study on synergistic effects in co-pyrolysis of tobacco stalk with polymer wastes:thermal behavior, gas formation, and kinetics[J]. Bioresource Technology, 2019, 292:121970. [36] BACH Q V, CHEN W H, ENG C F, et al. Pyrolysis characteristics and non-isothermal torrefaction kinetics of industrial solid wastes[J]. Fuel, 2019, 251:118-125. [37] WANG L Z, CHAI M Y, LIU R H, et al. Synergetic effects during co-pyrolysis of biomass and waste tire:a study on product distribution and reaction kinetics[J]. Bioresource Technology, 2018, 268:363-370. [38] LIU G C, LIAO Y F, GUO S D, et al. Thermal behavior and kinetics of municipal solid waste during pyrolysis and combustion process[J]. Applied Thermal Engineering, 2016, 98:400-408. [39] HU D H, CHEN M Q, HUANG Y W, et al. Evaluation on isothermal pyrolysis characteristics of typical technical solid wastes[J]. Thermochimica Acta, 2020, 688:178604. [40] SALVILLA J N V, OFRASIO B I G, ROLLON A P, et al. Synergistic co-pyrolysıs of polyolefin plastics with wood and agricultural wastes for biofuel production[J]. Applied Energy, 2020, 279:115668. [41] LIU J X, HUANG S M, CHEN K, et al. Preparation of biochar from food waste digestate:pyrolysis behavior and product properties[J]. Bioresource Technology, 2020, 302:122841. [42] 陈泽宇,邢献军,李永玲,等. 城市生活垃圾与生物质成型燃料混合热解特性及动力学研究[J]. 太阳能学报, 2020, 41(10):340-346. [43] 谢奕标. 废旧电路板热解动力学及产物分析[J]. 环境工程技术学报, 2020, 10(2):303-309. [44] 高金锴,李健,汪宁,等. K2CO3对秸秆类生物质热解气相产物析出特性及动力学研究[J]. 中国电机工程学报, 2020, 40(4):1266-1273. [45] 孙肖东,徐艳英,吕超,等. 典型室内装修壁纸的热解特性和动力学研究[J]. 消防科学与技术, 2019, 38(1):11-14. [46] 张明振,原琪,黄冬梅,等. 典型纺织品热稳定性及热解动力学研究[J]. 中国科技论文, 2018, 13(18):2117-2123. [47] 张瑜,袁树杰. 家电塑料外壳的热解特性与动力学分析[J]. 消防科学与技术, 2018, 37(7):874-878. [48] ÖZSIN G, PVTVN A E. Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR[J]. Waste Management, 2017, 64:315-326. [49] LI X W, MEI Q Q, DAI X H, et al. Effect of anaerobic digestion on sequential pyrolysis kinetics of organic solid wastes using thermogravimetric analysis and distributed activation energy model[J]. Bioresource Technology, 2017, 227:297-307. [50] VUPPALADADIYAM A K, ANTUNES E, SANCHEZ P B, et al. Influence of microalgae on synergism during co-pyrolysis with organic waste biomass:a thermogravimetric and kinetic analysis[J]. Renewable Energy, 2021, 167:42-55. [51] MISHRA R K, MOHANTY K. Kinetic analysis and pyrolysis behaviour of waste biomass towards its bioenergy potential[J]. Bioresource Technology, 2020, 311:123480. [52] FANG S W, LIN Y S, LIN Y, et al. Influence of ultrasonic pretreatment on the co-pyrolysis characteristics and kinetic parameters of municipal solid waste and paper mill sludge[J]. Energy, 2020, 190:116310. [53] ZHANG X S, LEI H W, ZHU L, et al. Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics[J]. Bioresource Technology, 2016, 220:233-238. [54] WANG S Q, LIN X N, LI Z H, et al. Thermal and kinetic behaviors of corn stover and polyethylene in catalytic co-pyrolysis[J]. Bio-resources, 2018, 13:4102-4117. [55] 李丽洁,牛文娟,孟海波,等. 生物炭对向日葵秸秆热解特性及气体产物影响[J]. 农业工程学报, 2020, 36(4):227-233. [56] 马大朝,高伟康,孙翔,等. 稻壳与聚氯乙烯共热解的特性及动力学[J]. 环境工程, 2020, 38(1):135-140. [57] 吴凯,朱锦娇,朱跃钊,等. 废轮胎与生物质共热解特性研究[J]. 林产化学与工业, 2018, 38(5):53-60. [58] 郭慧敏,李翔宇,王海彦,等. 纤维素和聚丙烯共催化热解热重分析及动力学研究[J]. 太阳能学报, 2017, 38(10):2705-2711. [59] FERNANDEZ A, SAFFE A, PEREYRA R, et al. Kinetic study of regional agro-industrial wastes pyrolysis using non-isothermal TGA analysis[J]. Applied Thermal Engineering, 2016, 106:1157-1164.
点击查看大图
计量
- 文章访问数: 220
- HTML全文浏览量: 35
- PDF下载量: 4
- 被引次数: 0