中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浮珠浮选法中浮珠材料对小球藻采收效率的影响

文豪 闫玉亭 钟洁雯 章浩文 尹鸿伟 田思雨

文豪, 闫玉亭, 钟洁雯, 章浩文, 尹鸿伟, 田思雨. 浮珠浮选法中浮珠材料对小球藻采收效率的影响[J]. 环境工程, 2022, 40(11): 26-31. doi: 10.13205/j.hjgc.202211004
引用本文: 文豪, 闫玉亭, 钟洁雯, 章浩文, 尹鸿伟, 田思雨. 浮珠浮选法中浮珠材料对小球藻采收效率的影响[J]. 环境工程, 2022, 40(11): 26-31. doi: 10.13205/j.hjgc.202211004
WEN Hao, YAN Yuting, ZHONG Jiewen, ZHANG Haowen, YIN Hongwei, TIAN Siyu. EFFECT OF BUOY-BEAD MATERIAL ON CHLORELLA VULGARIS HARVESTING PERFORMANCE DURING FLOTATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 26-31. doi: 10.13205/j.hjgc.202211004
Citation: WEN Hao, YAN Yuting, ZHONG Jiewen, ZHANG Haowen, YIN Hongwei, TIAN Siyu. EFFECT OF BUOY-BEAD MATERIAL ON CHLORELLA VULGARIS HARVESTING PERFORMANCE DURING FLOTATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 26-31. doi: 10.13205/j.hjgc.202211004

浮珠浮选法中浮珠材料对小球藻采收效率的影响

doi: 10.13205/j.hjgc.202211004
基金项目: 

安徽理工大学大学生创新创业训练计划项目(S202010361009,202110361006);安徽省自然科学基金青年基金(2008085QC107);安徽省教育厅基金重点项目(KJ2020A0314);安徽理工大学校级重点项目(13200041)

详细信息
    作者简介:

    文豪(1989-),男,讲师,主要研究方向为新型藻类分离技术。2019059@aust.edu.cn

EFFECT OF BUOY-BEAD MATERIAL ON CHLORELLA VULGARIS HARVESTING PERFORMANCE DURING FLOTATION

  • 摘要: 浮珠浮选法是目前一种新的微藻采收方法,其中浮珠材质对于采收效率具有重要影响。为选取采收效率高的浮珠材料及其探索在采收过程中与小球藻的作用机理,以普通小球藻为例,选用目前较为常见的硅硼酸钠、空心玻璃珠、粉煤灰和乳胶颗粒作为浮珠材料进行分析,发现硅硼酸钠采收效率最高,在不添加药剂的条件下可达到63.24%。浮珠颗粒和微藻粘附过程中在16.6 nm时出现第二能穴,硅硼酸钠表面疏水性和粗糙度是影响采收率的主要因素。
  • [1] CHEN H, WANG J, ZHENG Y, et al. Algal biofuel production coupled bioremediation of biomass power plant wastes based on Chlorella sp. C2 cultivation[J]. Applied Energy, 2018, 211(FEB.1):296-305.
    [2] 冯思然,朱顺妮,王忠铭.微藻污水处理研究进展[J].环境工程,2019,37(4):57-62

    ,6.
    [3] MANIRAFASHA E, NDIKUBWIMANA T, ZENG X H, et al. Phycobiliprotein:potential microalgae derived pharmaceutical and biological reagent[J]. Biochemical Engineering Journal, 2016,109:282-296.
    [4] IQBAL H. High-value compounds from microalgae with industrial exploitability:a review[J]. Frontiers in Bioscience (Scholar Edition), 2017, 9(3):319-342.
    [5] MARRONE B L, LACEY R E, ANDERSON D B, et al. Review of the harvesting and extraction program within the National Alliance for Advanced Biofuels and Bioproducts[J]. Algal Research, 2018,33:470-485.
    [6] HATTAB M A. Microalgae harvesting methods for industrial production of biodiesel:critical review and comparative analysis[J]. Journal of Fundamentals of Renewable Energy and Applications, 2015, 5(2):100154.
    [7] 魏婕,王若男,蒋毓婷,等.微纳气浮法用于油墨废水处理实验[J].环境工程,2020,38(12):13-18

    ,85.
    [8] ZHAO Y, LI Y P, HUANG J, et al. Rebound and attachment involving single bubble and particle in the separation of plastics by froth flotation[J]. Separation & Purification Technology, 2015, 144:123-132.
    [9] KEIM P, LUERWEG M, AIVASIDIS A, et al. Development in fluidized bed reactor design for waste water treatment using SIRAN®-spheres for microbial colonization[C]//Dechema Biotechnology Conferences Lectures Held at Dechema Meeting of Biotechnologists, 1990.
    [10] SUMANT K,NARAYAN C G, KAZMI A A. Ballasted sand flocculation for water, wastewater and CSO treatment[J]. Environmental Technology Reviews, 2016, 5(1):57-67.
    [11] MASSCHELEIN W J. Unit processes in drinking water treatment[J]. Environmental Science & Pollution Control, 1992, 2005(4):6-10.
    [12] 邹小彤,徐开伟,文豪,等. 能源微藻的无泡采收新方法及其性能[J]. 过程工程学报, 2018, 2(10):872-878.
    [13] TOH P Y, NG B W, AHMAD A L,et al. The role of particle-to-cell interactions in dictating nanoparticle aided magnetophoretic separation of microalgal cells[J]. Nanoscale, 2014, 6(21):12838-12848.
    [14] 高静思,朱佳,董文艺.光照对我国常见藻类的影响机制及其应用[J].环境工程,2019,37(5):111-116.
    [15] WEN H, ZOU X T, XU K W, et al. Buoy-bead flotation application for the harvesting of microalgae and mechanistic analysis of significant factors[J]. Bioprocess and biosystems engineering, 2019, 42(3):391-400.
    [16] ROLF B, VAN D M H C, BUSSCHER H J. Physico-chemistry of initial microbial adhesive interactions-its mechanisms and methods for study[J]. Fems Microbiology Reviews, 2010,2:179-230.
    [17] OZKAN A, BERBEROGLU H. Physico-chemical surface properties of microalgae[J]. Colloids & Surfaces B Biointerfaces, 2013, 112:287-293.
    [18] GIRARDI F, MAGGINI S, VOLPE C D, et al. Hybrid organic-inorganic materials on paper:surface and thermo-mechanical properties[J]. Journal of Sol-Gel Science and Technology, 2011, 60(3):315-323.
    [19] OJANIEMI U, RIIHIMÄKI M, MANNINEN M, et al. Wall function model for particulate fouling applying XDLVO theory[J]. Chemical Engineering Science, 2012, 84:57-69.
    [20] HAO W, LI Y P, ZHOU S, et al. Surface characteristics of microalgae and their effects on harvesting performance by air flotation[J]. Int J Agric & Biol Eng, 2017, 10(1):125-133.
    [21] COSTA L, CARRETERO-GENEVRIER A, FERRAIN E, et al. Quantitative mapping of free-standing lipid membranes on nano-porous mica substrates[J]. bioRxiv, 2018,9(3):40-72.
    [22] OMETTO F, POZZA C, WHITTON R, et al. The impacts of replacing air bubbles with microspheres for the clarification of algae from low cell-density culture[J]. Water Research 2014, 53(15):168-179.
    [23] 曹秀芹,柳婷,江坤,等.低温热水解处理对污泥流变特性的影响[J].环境工程,2019,37(12):104-108.
  • 加载中
计量
  • 文章访问数:  144
  • HTML全文浏览量:  20
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-26
  • 网络出版日期:  2023-03-24

目录

    /

    返回文章
    返回