EFFECT OF BUOY-BEAD MATERIAL ON CHLORELLA VULGARIS HARVESTING PERFORMANCE DURING FLOTATION
-
摘要: 浮珠浮选法是目前一种新的微藻采收方法,其中浮珠材质对于采收效率具有重要影响。为选取采收效率高的浮珠材料及其探索在采收过程中与小球藻的作用机理,以普通小球藻为例,选用目前较为常见的硅硼酸钠、空心玻璃珠、粉煤灰和乳胶颗粒作为浮珠材料进行分析,发现硅硼酸钠采收效率最高,在不添加药剂的条件下可达到63.24%。浮珠颗粒和微藻粘附过程中在16.6 nm时出现第二能穴,硅硼酸钠表面疏水性和粗糙度是影响采收率的主要因素。Abstract: Buoy-bead flotation is a new microalgae harvesting method at present. The bead material has an important effect on harvesting efficiency. In order to achieve a high-efficiency bead material and mechanism during flotation, the study chose Chlorella vulgaris as the flotation microalgae and sodium borosilicate, hollow glass, fly ash and latex as the bead material. The experimental results showed that the harvesting efficiency of sodium borosilicate could achieve 63.24% without flotation reagent. The sodium silicate borate material could achieve high harvesting efficiency, because there was a secondary minimum at 16.6 nm during adhesion with microalgae. Sodium silicate had a strong hydrophobicity, which was easy to adhere to Chlorella vulgaris. Sodium silicate also had high surface roughness, which provided more binding sites. The two reasons were also important factors of high Chlorella vulgaris harvesting efficiency
-
Key words:
- buoy-bead flotation method /
- bead material /
- Chlorella vulgaris /
- harvesting /
- function mechanism
-
[1] CHEN H, WANG J, ZHENG Y, et al. Algal biofuel production coupled bioremediation of biomass power plant wastes based on Chlorella sp. C2 cultivation[J]. Applied Energy, 2018, 211(FEB.1):296-305. [2] 冯思然,朱顺妮,王忠铭.微藻污水处理研究进展[J].环境工程,2019,37(4):57-62,6. [3] MANIRAFASHA E, NDIKUBWIMANA T, ZENG X H, et al. Phycobiliprotein:potential microalgae derived pharmaceutical and biological reagent[J]. Biochemical Engineering Journal, 2016,109:282-296. [4] IQBAL H. High-value compounds from microalgae with industrial exploitability:a review[J]. Frontiers in Bioscience (Scholar Edition), 2017, 9(3):319-342. [5] MARRONE B L, LACEY R E, ANDERSON D B, et al. Review of the harvesting and extraction program within the National Alliance for Advanced Biofuels and Bioproducts[J]. Algal Research, 2018,33:470-485. [6] HATTAB M A. Microalgae harvesting methods for industrial production of biodiesel:critical review and comparative analysis[J]. Journal of Fundamentals of Renewable Energy and Applications, 2015, 5(2):100154. [7] 魏婕,王若男,蒋毓婷,等.微纳气浮法用于油墨废水处理实验[J].环境工程,2020,38(12):13-18,85. [8] ZHAO Y, LI Y P, HUANG J, et al. Rebound and attachment involving single bubble and particle in the separation of plastics by froth flotation[J]. Separation & Purification Technology, 2015, 144:123-132. [9] KEIM P, LUERWEG M, AIVASIDIS A, et al. Development in fluidized bed reactor design for waste water treatment using SIRAN®-spheres for microbial colonization[C]//Dechema Biotechnology Conferences Lectures Held at Dechema Meeting of Biotechnologists, 1990. [10] SUMANT K,NARAYAN C G, KAZMI A A. Ballasted sand flocculation for water, wastewater and CSO treatment[J]. Environmental Technology Reviews, 2016, 5(1):57-67. [11] MASSCHELEIN W J. Unit processes in drinking water treatment[J]. Environmental Science & Pollution Control, 1992, 2005(4):6-10. [12] 邹小彤,徐开伟,文豪,等. 能源微藻的无泡采收新方法及其性能[J]. 过程工程学报, 2018, 2(10):872-878. [13] TOH P Y, NG B W, AHMAD A L,et al. The role of particle-to-cell interactions in dictating nanoparticle aided magnetophoretic separation of microalgal cells[J]. Nanoscale, 2014, 6(21):12838-12848. [14] 高静思,朱佳,董文艺.光照对我国常见藻类的影响机制及其应用[J].环境工程,2019,37(5):111-116. [15] WEN H, ZOU X T, XU K W, et al. Buoy-bead flotation application for the harvesting of microalgae and mechanistic analysis of significant factors[J]. Bioprocess and biosystems engineering, 2019, 42(3):391-400. [16] ROLF B, VAN D M H C, BUSSCHER H J. Physico-chemistry of initial microbial adhesive interactions-its mechanisms and methods for study[J]. Fems Microbiology Reviews, 2010,2:179-230. [17] OZKAN A, BERBEROGLU H. Physico-chemical surface properties of microalgae[J]. Colloids & Surfaces B Biointerfaces, 2013, 112:287-293. [18] GIRARDI F, MAGGINI S, VOLPE C D, et al. Hybrid organic-inorganic materials on paper:surface and thermo-mechanical properties[J]. Journal of Sol-Gel Science and Technology, 2011, 60(3):315-323. [19] OJANIEMI U, RIIHIMÄKI M, MANNINEN M, et al. Wall function model for particulate fouling applying XDLVO theory[J]. Chemical Engineering Science, 2012, 84:57-69. [20] HAO W, LI Y P, ZHOU S, et al. Surface characteristics of microalgae and their effects on harvesting performance by air flotation[J]. Int J Agric & Biol Eng, 2017, 10(1):125-133. [21] COSTA L, CARRETERO-GENEVRIER A, FERRAIN E, et al. Quantitative mapping of free-standing lipid membranes on nano-porous mica substrates[J]. bioRxiv, 2018,9(3):40-72. [22] OMETTO F, POZZA C, WHITTON R, et al. The impacts of replacing air bubbles with microspheres for the clarification of algae from low cell-density culture[J]. Water Research 2014, 53(15):168-179. [23] 曹秀芹,柳婷,江坤,等.低温热水解处理对污泥流变特性的影响[J].环境工程,2019,37(12):104-108.
点击查看大图
计量
- 文章访问数: 144
- HTML全文浏览量: 20
- PDF下载量: 3
- 被引次数: 0