LAKE AREA CHANGE OF CHAHANNUR LAKE AND ITS RESPONSES TO CLIMATE CHANGE
-
摘要: 以察汗淖尔流域为研究对象,基于1990—2020年Landsat遥感影像,通过归一化水体指数(MNDWI)结合人工目视解译的方法提取察汗淖尔31年的丰水期湖泊面积并分析其演化规律。选取化德、尚义和商都3个气象站点的月气温、降水、蒸发量和相对湿度数据,采用线性倾向估计法和Mann-Kendall检验法分析了气候要素的变化趋势,并利用主成分分析和相关性分析法综合说明了察汗淖尔湖泊面积对气候因子的响应关系。结果表明:1)31年间,察汗淖尔流域呈气温上升、降水量下降、蒸发量上升的暖干化趋势;2)1990—2020年察汗淖尔湖泊面积经历稳定、减少、增长、再减少,4个变化阶段,湖泊面积于1991年达到最大49.72 km2,于2005年达到最小0.074 km2,整体呈下降趋势;3)湖泊面积对气候的响应迅速,夏季降水量和夏季蒸发量为影响丰水期湖泊面积的主要因素,同时也是造成湖泊季节性变化明显的主要因素。Abstract: The Chahannur lake Basin was taken as the research object of this paper. By extracting the lake areas of the Chahannur during the wet season of 31 years from 1990 to 2020 using Landsat images by modified normalized difference water index (MNDWI) combined with the method of visual interpretation, the evolution law of the lake area was obtained. Based on the monthly temperature, precipitation, evaporation and relative humidity data of Huade, Shangyi and Shangdu meteorological stations, the linear trend estimation method and Mann-Kendall test method were used to analyze the changing trend of climate factors. Principal component analysis and correlation analysis were used to explain the response of the lake area to climate factors. The results showed that:1) In the past 31 years, the Chahannur lake Basin has presented a warming and drying trend of rising temperature, decreasing precipitation and increasing evaporation; 2) the area of the Chahannur lake experienced four stages of stability, decrease, increase, and decrease again, and the water surface area of the Chahannur lake showed a downward trend as a whole between 1990 to 2020. During the 31 years, the lake area was 49.72 square kilometers at its maximum and 0.074 square kilometers at its minimum; 3) lake area respond quickly to climate. The increase of evaporation and decrease of precipitation in summer resulted in a significant decrease in relative humidity, which was the main factor affecting the lake area in the wet season and causing the obvious seasonal variation of the Chahannur lake.
-
Key words:
- the Chahannur lake /
- lake area /
- climatic factors /
- principal component analysis /
- correlation analysis
-
[1] 杨桂山, 马荣华, 张路, 等. 中国湖泊现状及面临的重大问题与保护策略[J]. 湖泊科学, 2010, 22(6):799-810. [2] PEKEL J F, COTTAM A, GORELICK N, et al. High-resolution mapping of global surface water and its long-term changes[J]. Nature, 2016, 540(7633):418-422. [3] 丁永建, 刘时银, 叶柏生, 等. 近50a中国寒区与旱区湖泊变化的气候因素分析[J]. 冰川冻土, 2006, 28(5):623-632. [4] 李均力, 方晖, 包安明, 等. 近期亚洲中部高山地区湖泊变化的时空分析[J]. 资源科学, 2011, 33(10):1839-1846. [5] 吉力力·阿不都外力, 徐俊荣, 穆桂金, 等. 艾比湖盐尘对周边地区土壤盐分及景观变化的影响[J]. 冰川冻土, 2007,29(6):928-939. [6] 鄢雪英, 丁建丽, 李鑫, 等. 艾比湖湿地退化对盐尘暴发生及运移路径的影响[J]. 生态学报, 2015, 35(17):5856-5865. [7] DAI X A, YANG X P, WANG M L, et al. The dynamic change of bosten lake area in response to climate in the past 30 Years[J]. Water, 2019, 12(1):4. [8] 边多, 杨志刚, 李林, 等. 近30年来西藏那曲地区湖泊变化对气候波动的响应[J]. 地理学报, 2006, 61(5):510-518. [9] 曹国亮, 李天辰, 陆垂裕, 等. 干旱区季节性湖泊面积动态变化及蒸发量:以艾丁湖为例[J]. 干旱区研究, 2020, 37(5):1095-1104. [10] THEUERKAUF M, BLUME T, BRAUER A, et al. Holocene lake-level evolution of Lake Tiefer See, NE Germany, caused by climate and land cover changes[J]. Boreas, 2021. [11] 程俊翔, 徐力刚, 王青, 等. 洞庭湖近30 a水位时空演变特征及驱动因素分析[J]. 湖泊科学, 2017, 29(4):974-983. [12] 李林, 申红艳, 刘彩红, 等. 青海湖水位波动对气候暖湿化情景的响应及其机理研究[J]. 气候变化研究进展, 2020, 16(5):600-608. [13] 常学礼, 赵学勇, 王玮, 等. 科尔沁沙地湖泊消涨对气候变化的响应[J]. 生态学报, 2013, 33(21):7002-7012. [14] 朱立平, 张国庆, 杨瑞敏, 等. 青藏高原最近40年湖泊变化的主要表现与发展趋势[J]. 中国科学院院刊, 2019, 34(11):1254-1263. [15] BAI J, CHEN X, YANG L, et al. Monitoring variations of inland lakes in the arid region of Central Asia[J]. Frontiers of Earth Science, 2012, 6(2):147-156. [16] MA R, DUAN H, HU C, et al. A half-century of changes in China's lakes:global warming or human influence?[J]. Geophysical Research Letters, 2010, 37(24):L24106. [17] 李东昇, 张仁勇, 崔步礼, 等. 1986-2015年青藏高原哈拉湖湖泊动态对气候变化的响应[J]. 自然资源学报, 2021, 36(2):501-512. [18] 王玉洁, 秦大河. 气候变化及人类活动对西北干旱区水资源影响研究综述[J]. 气候变化研究进展, 2017, 13(5):483-493. [19] 周启鸣, 李剑锋, 崔爱红, 等. 中亚干旱区陆地水资源对气候变化的响应[J]. 水文, 2021, 41(2):8-13,74. [20] 成晨, 傅文学, 胡召玲, 等. 基于遥感技术的近30年中亚地区主要湖泊变化[J]. 国土资源遥感, 2015, 27(1):146-152. [21] 李均力, 盛永伟, 骆剑承, 等. 青藏高原内陆湖泊变化的遥感制图[J]. 湖泊科学, 2011, 23(3):311-320. [22] 张振瑜, 王乃昂, 马宁, 等. 近40a巴丹吉林沙漠腹地湖泊面积变化及其影响因素[J]. 中国沙漠, 2012, 32(6):1743-1750. [23] 王莺, 闫正龙, 高凡. 1957-2015年红碱淖湖水域面积时空变化监测及驱动力分析[J]. 农业工程学报, 2018, 34(2):265-271. [24] 刘清, 吴君峰, 王浩, 等. 基于Google Earth Engine云平台的黑龙江流域长时序常年和季节性水面提取及变化分析[J]. 环境工程, 2021, 39(1):80-88. [25] 赵丹, 石建省, 聂洪峰, 等. 察汗淖尔:典型萎缩湖泊的生态困境及保护修复[J]. 地球, 2021(1):52-57. [26] 揭文辉, 张策, 汪冰, 等. 2000-2018年坝上高原湿地遥感动态监测与生态环境变迁[J]. 矿产勘查, 2020, 11(12):2720-2728. [27] 任芝花, 黎明琴, 张纬敏. 小型蒸发器对E-601B蒸发器的折算系数[J]. 应用气象学报, 2002, 13(4):508-514. [28] 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005, 9(5):589-595. [29] 魏凤英. 现代气候统计诊断与预测技术[M]. 2版. 北京:气象出报社, 2007. [30] 姜大膀, 王晓欣. 对IPCC第六次评估报告中有关干旱变化的解读[J]. 大气科学学报, 2021, 44(5):650-653. [31] 沈永平, 王国亚. IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点[J]. 冰川冻土, 2013, 35(5):1068-1076. [32] 卢爱刚. 全球变暖对中国区域相对湿度变化的影响[J]. 生态环境学报, 2013, 22(8):1378-1380. [33] 王景雷, 孙景生, 宋妮, 等. 基于GIS和PCA的冬小麦需水量影响因子分析[J]. 武汉大学学报(工学版), 2009, 42(5):640-643. [34] 汪冬华, 马艳梅. 多元统计分析与SPSS应用[M]. 上海:华东理工大学出版社,2018. [35] 陶澍. 应用数理统计方法[M]. 北京:中国环境科学出版社, 1994. [36] PRITSCHET L, POWELL D, HORNE Z. Marginally significant effects as evidence for hypotheses:changing attitudes over four decades[J]. Psychol Sci, 2016, 27(7):1036-1042.
点击查看大图
计量
- 文章访问数: 214
- HTML全文浏览量: 30
- PDF下载量: 3
- 被引次数: 0