CONSTRUCTION OF MICRO-ECOSYSTEM IN RURAL RIVERS AND IN-SITU REMEDIATION ON THE SEDIMENT
-
摘要: 我国农村河道底泥氮磷元素蓄积严重,物化修复技术存在污染物去除不彻底、易破坏水生生态系统等问题。采用生物生态修复技术不仅能抑制底泥污染释放,还能恢复水生生态系统,强化水体自净功能。构建了由"玉米秸秆生物炭固定化脱氮菌-苦草/伊乐藻-中华田园螺"组合的泥水界面复合微生态系统,并探究了该系统对底泥和上覆水中污染物的去除效果及对底泥微生物群落结构的影响。结果表明:复合微生态系统能有效降低底泥中的氮磷污染,运行62 d后底泥OM、TN和TP去除率分别为85.41%、77.40%和54.98%,可将OM、TN、TP严重污染水平的底泥分别修复至轻度污染、中度污染和清洁水平;同时微生态系统对上覆水氮素具有较好的去除效果,上覆水NH4+-N、TN浓度均达到GB 3838—2018《地表水环境质量标准》Ⅲ类水标准。微生态系统的构建提高了河道底泥系统中的生物多样性,底泥污染的Chloroflexi (绿弯菌门)相对丰度降低,具有降解污染物能力的Proteobacteria (变形菌门)相对丰度提高。Abstract: The accumulation of nitrogen and phosphorus elements in rural river sediments in China is serious, and the existing physical and chemical remediation technology has some problems, such as incomplete removal of pollutants and easy destruction of the aquatic ecosystem. The adoption of biological ecological remediation technology can not only inhibit the release of sediment pollution, but also restore the aquatic ecosystem and strengthen the self-purification function of water bodies. In this paper, a sediment-water interface micro-ecosystem with corn straw biochar immobilizing denitrification bacteria, Vallisneria natans and Elodea nuttallii-snail was constructed, and the removal effect of pollutants in sediment and overlying water, and the effect on the microbial community structure of sediment were investigated. The results showed that the composite micro-ecosystem could effectively remove nitrogen and phosphorus pollution from the sediment. After 62 days of operation, the removal efficiencies of TN and TP from the sediment were 77.40% and 54.98%, respectively. The sediment with severe pollution level of TN, TP, and organic matters could be restored to the level of mild, moderate and clean, respectively. At the same time, the micro-ecosystem had a good removal effect on nitrogen in overlying water, and the concentration of NH4+-N and TN in overlying water reached the class Ⅲ of Environmental Quality Standard for Surface Water. The construction of the micro-ecosystem improved the biodiversity of the river sediment system, and the relative abundance of Chloroflexi, which indicates the pollution of sediment, got decreased, while the relative abundance of Proteobacteria, which is capable of degrading pollutants, got increased.
-
Key words:
- microecosystem /
- rural river /
- straw-based biochar /
- in-situ remediation /
- overlying water /
- water quality
-
[1] 郭舒临. 水下生态系统构建在平原河网地区农村河道治理上的应用研究[D]. 杭州:浙江大学, 2019. [2] 丁玉琴, 李大鹏, 张帅, 等. 镁改性芦苇生物炭控磷效果及其对水体修复[J]. 环境科学, 2020, 41(4):1692-1699. [3] ZHU Y Y, TANG W Z, JIN X, et al. Using biochar capping to reduce nitrogen release from sediments in eutrophic lakes[J]. Science of the Total Environment, 2019, 646:93-104. [4] LI H X, LI Y X, XU Y, et al. Biochar phosphorus fertilizer effects on soil phosphorus availability[J]. Chemosphere, 2020, 244:125471. [5] 李雨平, 姜莹莹, 刘宝明, 等. 过氧化钙(CaO2)联合生物炭对河道底泥的修复[J]. 环境科学, 2020, 41(8):3629-3636. [6] WANG L Z, LIU Q J, HU C W, et al. Phosphorus release during decomposition of the submerged macrophyte Potamogeton crispus[J]. Limnology, 2018, 19(3):355-366. [7] WALKER P D, WIJNHOVEN S, VELDE G V D. Macrophyte presence and growth form influence macroinvertebrate community structure[J]. Aquatic Botany, 2013, 104:80-87. [8] 谭凯婷, 柳君侠, 王志红, 等. 沉水植物修复富营养化景观水体的研究进展[J]. 水处理技术, 2019, 45(6):15-18,27. [9] 张义, 刘子森, 张垚磊, 等. 多孔陶瓷滤球与沉水植物联合作用处理杭州西湖沉积物中的磷[J]. 环境工程学报, 2017, 11(7):4085-4090. [10] 高帅强, 陈志远, 李锋民, 等. 沉水植物矮慈姑对重污染底泥的耐受及其中主要污染物的去除[J]. 环境科学学报, 2019, 39(7):2182-2189. [11] 方坤. 生物炭对沉水植物系统构建及除污效能影响研究[D]. 北京:北京林业大学, 2020. [12] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002. [13] 包宇飞, 胡明明, 王殿常, 等. 黄柏河梯级水库沉积物营养盐与重金属分布特征及污染评价[J]. 生态环境学报, 2021, 30(5):1005-1016. [14] 杨海燕, 师路远, 卢少勇, 等. 不同覆盖材料对沉积物P、N释放的抑制效果[J]. 环境工程学报, 2015, 9(5):2084-2090. [15] HAO Z, XIN L, QI L, et al. Response of the submerged macrophytes Vallisneria natans to snails at different densities[J]. Ecotoxicology and Environmental Safety, 2019, 194:110373. [16] 徐德福, 潘潜澄, 李映雪, 等. 生物炭对人工湿地植物根系形态特征及净化能力的影响[J]. 环境科学, 2018, 39(7):3187-3193. [17] 许峥, 陈宇, 后志, 等. 不同纯生物菌剂对黑臭水体底泥的处理效果[J]. 中国给水排水, 2021, 37(1):102-108,113. [18] 王浩, 李正魁, 张一品, 等. 伊乐藻-高效脱氮微生物协同作用对污染水体氮素脱除机制的影响[J]. 环境科学, 2017, 38(11):4615-4622. [19] 周楠楠, 王赢, 高顺峰, 等. 两种不同根系特征沉水植物对沉积物剖面不同形态磷的影响[J]. 环境科学学报, 2021, 41(6):2222-2228. [20] WU Z H, WANG S R, LUO J. Transfer kinetics of phosphorus (P) in macrophyte rhizosphere and phytoremoval performance for lake sediments using DGT technique[J]. Journal of Hazardous Materials, 2018, 350:189-200. [21] MCLELLAN S L, NEWTON R J, VANDEWALLE J L, et al. Sewage reflects the distribution of human faecal Lachnospiraceae[J]. Environmental Microbiology, 2013, 15(8):2213-2227. [22] ZHANG J X, YANG Y Y, ZHAO L, et al. Distribution of sediment bacterial and archaeal communities in plateau freshwater lakes[J]. Applied Microbiology and Biotechnology, 2015, 99(7):3291-3302. [23] PANPAN M, HAIYAN P, WENRONG H, et al. How to increase microbial degradation in constructed wetlands:influencing factors and improvement measures[J]. Bioresource Technology, 2014, 157:316-326. [24] CLEARY D F R, POLÓNIA A R M, BECKING L E, et al. Compositional analysis of bacterial communities in seawater, sediment, and sponges in the Misool coral reef system, Indonesia[J]. Marine Biodiversity, 2018, 48(4):1889-1901. [25] CAI W, LI Y, NIU L H, et al. New insights into the spatial variability of biofilm communities and potentially negative bacterial groups in hydraulic concrete structures[J]. Water Research, 2017, 123:495-504. [26] 呼唤, 李丹蕾, 王玉莹, 等. 富砷湖滨湿地底泥优势细菌群落对风浪扰动的响应[J]. 应用与环境生物学报,2021, 27(6):1492-1499. [27] 薛银刚, 刘菲, 江晓栋, 等. 太湖不同湖区冬季沉积物细菌群落多样性[J]. 中国环境科学, 2018, 38(2):719-728. [28] SHAO K Q, GAO G, QIN B Q, et al. Comparing sediment bacterial communities in the macrophyte-dominated and algae-dominated areas of eutrophic Lake Taihu, China[J]. NRC Research Press, 2011, 57(4):263-272.
点击查看大图
计量
- 文章访问数: 290
- HTML全文浏览量: 58
- PDF下载量: 15
- 被引次数: 0