中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅藻土负载MnFe2O4纳米颗粒活化PMS降解金橙Ⅱ

张理军 严群 周子琳 陈燕 陈锦富

陈国庆, 高继慧, 龚泽儒, 高建民, 秦裕琨. 复合喷动塔内蒸发特性的数值模拟与实验研究[J]. 环境工程, 2009, 27(6): 79-84. doi: 10.13205/j.hjgc.200906024
引用本文: 张理军, 严群, 周子琳, 陈燕, 陈锦富. 硅藻土负载MnFe2O4纳米颗粒活化PMS降解金橙Ⅱ[J]. 环境工程, 2022, 40(11): 61-68. doi: 10.13205/j.hjgc.202211009
ZHANG Lijun, YAN Qun, ZHOU Zilin, CHEN Yan, CHEN Jinfu. NANOPARTICLES SUPPORTED BY DIATOMITE FOR REMOVAL OF ORANGE Ⅱ THROUGH ACTIVATING PMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 61-68. doi: 10.13205/j.hjgc.202211009
Citation: ZHANG Lijun, YAN Qun, ZHOU Zilin, CHEN Yan, CHEN Jinfu. NANOPARTICLES SUPPORTED BY DIATOMITE FOR REMOVAL OF ORANGE Ⅱ THROUGH ACTIVATING PMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 61-68. doi: 10.13205/j.hjgc.202211009

硅藻土负载MnFe2O4纳米颗粒活化PMS降解金橙Ⅱ

doi: 10.13205/j.hjgc.202211009
详细信息
    作者简介:

    张理军(1997-),男,硕士,主要研究方向为水污染控制理论与污水资源化利用。995758417@qq.com

    通讯作者:

    严群(1973-),女,博士,副教授,主要研究方向为水污染控制理论与资源化。1068630@qq.com

NANOPARTICLES SUPPORTED BY DIATOMITE FOR REMOVAL OF ORANGE Ⅱ THROUGH ACTIVATING PMS

  • 摘要: 采用溶胶-凝胶法制备硅藻土/MnFe2O4复合型催化剂(DMF),以金橙Ⅱ为目标污染物,分析DMF活化过一硫酸盐(PMS)的性能和作用机制。结果表明:1) MnFe2O4颗粒均匀负载于硅藻土上,使DMF具有更好的分散性和活化性;2) DMF对PMS的活化能力优于单一MnFe2O4,DMF (1:1)/PMS体系降解金橙Ⅱ符合准一级动力学模型,且降解速率是MnFe2O4/PMS体系的2.16倍,0.5 g/L DMF和0.5 mmol/L PMS在40 min内对50 mg/L金橙Ⅱ降解率达到93.1%;3)反应体系中存在·OH、SO4-·、1O2、·O2- 4种活性物种,其中·OH和SO4-·起主导作用;4) DMF复合材料具有更好的结构稳定性,金属离子溶出量远低于MnFe2O4。研究结果可为新型高效PMS催化剂在处理工业废水的实际应用提供参考。
  • [1] MERCYRAN B, HERNANDEZ-MAYA R, SOLÍS-LÓPEZ1 M, et al. Photocatalytic degradation of Orange G using TiO2/Fe3O4 nanocomposites[J]. Journal of Materials Science:Materials in Electronics, 2018, 29(8):15436-15444.
    [2] HU L X, DENG G H, LU W C, et al. Peroxymonosulfate activation by Mn3O4/metal-organic framework for degradation of refractory aqueous organic pollutant rhodamine B[J]. Chinese Journal of Catalysis, 2017, 38(8):1360-1372.
    [3] OLMEZ-HANCI T, ARSLAN-ALATON I. Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol[J].Chemical Engineering Journal, 2013, 224(1):10-16.
    [4] XU Y, AI J, ZHANG H. The mechanism of degradation of bisphenol A using the magnetically separable CuFe2O4/peroxymonosulfate heterogeneous oxidation process[J]. Journal of Hazardous Materials, 2016, 309:87-96.
    [5] SHAO S, QIAN L, ZHAN X, et al. Transformation and toxicity evolution of amlodipine mediated by cobalt ferrite activated peroxymonosulfate:effect of oxidant concentration[J]. Chemical Engineering Journal, 2020, 382:123005.
    [6] XIONG C Y, REN Q F, CHEN S H, et al. A multifunctional Ag3PO4/Fe3O4/Diatomite composites:photocatalysis, adsorption and sterilization[J]. Materials Today Communications, 2021, 28:102695.
    [7] KHRAISHEH M A, AL-GHOUTI M A, ALLEN S J. Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite[J]. Water Research, 2005, 39(5):922-932.
    [8] DONG X D, SUN Z M, ZHANG X W, et al. Synthesis and enhanced solar light photocatalytic activity of a C/N Co-doped TiO2/diatomite composite with exposed (001) facets[J]. Australian Journal of Chemistry, 2018, 71:315-324.
    [9] WANG B, ZHANG G X, LENG X, et al, Characterization and improved solar light activity of vanadium doped TiO2/diatomite hybrid catalysts[J]. Journal of Hazardous Materials, 2015, 285:212-220.
    [10] TAN C Q, GAO N Y, FU D F, et al. Efficient degradation of paracetamol with nanoscaled magnetic CoFe2O4 and MnFe2O4 as a heterogeneous catalyst of peroxymonosulfate[J]. Separation and Purification Technology, 2017, 175:47-57.
    [11] 石清清,蒲生彦,杨犀.纳米Cu0@Fe3O4活化PMS降解对-硝基苯酚的协同反应机制[J]. 环境科学, 2020, 41(10):4616-4625.
    [12] ZHANG Z L, WANG Y, TAN Q Q, et al. Facile solvothermal synthesis of mesoporous manganese ferrite (MnFe2O4) microspheres as anode materials for lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2013, 398:185-192.
    [13] TAN C Q, GAO N Y, DENG Y, et al. Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate[J]. Journal of Hazardous Materials, 2014, 276:442-460.
    [14] DATSKO T Y, ZELENTSOV V I, DATSKO E E, et al. Physicochemical and adsorption-structural properties of diatomite modified with aluminum compounds[J]. Surface Engineering and Applied Electrochemistry, 2011, 47(6):530-539.
    [15] HU Z B, ZHENG S L, JIA M Z, et al. Preparation and characterization of novel diatomite/ground calcium carbonate composite humidity control material[J]. Separation and Purification Technology. Advanced Powder Technology, 2017, 28(5):1372-1381.
    [16] FENG Y, WU D L, DENG Y, et al. Sulfate radical-mediated degradation of sulfadiazine by CuFeO2 rhombohedral crystal-catalyzed peroxymonosulfate:synergistic effects and mechanisms[J]. Environmental Science & Technology, 2016, 50(6):3119-3127.
    [17] LIN C H, SHI D J, WU Z T, et al. CoMn2O4 catalyst prepared using the sol-gel method for the activation of peroxymonosulfate and degradation of UV filter 2-phenylbenzimidazole-5-sulfonic acid(PBSA)[J]. Nanomaterials, 2019, 9(5):774.
    [18] TAN Y, LI C Q, SUN Z M, et al. Natural diatomite mediated spherically monodispersed CoFe2O4 nanoparticles for efficient catalytic oxidation of bisphenol A through activating peroxymonosulfate[J]. Chemical Engineering Journal, 2020, 388:124386.
    [19] GUAN Y H, MA J, REN Y M, et al. Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals[J]. Water Reseach, 2013, 47(14):5431-5438.
    [20] HUANG G X, WANG C Y, YANG C W, et al. Degradation of bisphenol a by peroxymonosulfate catalytically activated with Mn1.8Fe1.2O4 nanospheres:synergism between Mn and Fe[J]. Environmental Science & Technology, 2017, 51(21):12611-12618.
    [21] PAN Y, SU H R, ZHU Y T, et al. CaO2 based Fenton-like reaction at neutral pH:accelerated reduction of ferric species and production of superoxide radicals[J]. Water Research, 2018, 145:731-740.
    [22] DUAN P J, MA T F, YUE Y. Fe/Mn nanoparticles encapsulated in nitrogen-doped carbon nanotubes as a peroxymonosulfate activator for acetamiprid degradation[J]. Environmental Science:Nano, 2019, 6(6):1799-1811.
    [23] YANG S S, WUA P X, LIU J Q, et al. Efficient removal of bisphenol A by superoxide radical and singlet oxygen generated from peroxymonosulfate activated with Fe0-montmorillonite[J]. Chemical Engineering Journal, 2018, 350:484-495.
    [24] DONG X B, REN B X, SUN Z M, et al. Monodispersed CuFe2O4 nanoparticles anchored on natural kaolinite as highly efficient peroxymonosulfate catalyst for bisphenol A degradation[J]. Applied Catalysis B:Environmental, 2019, 253:206-217.
    [25] DENG J, FENG S F, MA X Y, et al. Heterogeneous degradation of Orange Ⅱ with peroxymonosulfate activated by ordered mesoporous MnFe2O4[J]. Separation and Purification Technology, 2016, 167:181-189.
    [26] GUAN Y H, MA J, LI X C, et al. Influence of pH on the Formation of Sulfate and Hydroxyl Radicals in the UV/Peroxymonosulfate System[J]. Environmental Science & Technology, 2011, 45(21):9308-9314.
    [27] FU H C, MA S L, ZHAO P, et al. Activation of peroxymonosulfate by graphitized hierarchical porous biochar and MnFe2O4 magnetic nanoarchitecture for organic pollutants degradation:structure dependence and mechanism[J]. Chemical Engineering Journal, 2019, 360:157-170.
    [28] MA W J, WANG N, DU Y C, et al. One-step synthesis of novel Fe3C@nitrogen-doped carbon nanotubes/graphene nanosheets for catalytic degradation of Bisphenol A in the presence of peroxymonosulfate[J]. Chemical Engineering Journal, 2019, 356:1022-1031.
    [29] ANIPSITAKIS G P, DIONYSIOU D D, GONZALEZ M A. Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds:implications of chloride ions[J]. Environmental Science & Technology, 2006, 40(3):1000-1007.
  • 期刊类型引用(9)

    1. 徐安宁,王咏薇,吕亚宁,左天赐,戴泽凯,孟新杰,陈磊. 山地地形对喀左PM_(2.5)重污染事件的影响模拟. 环境科学学报. 2025(02): 380-393 . 百度学术
    2. 苟爱萍,李皖新,王江波. 重庆市绿色空间景观格局与PM_(2.5)浓度时空相关性. 地球科学与环境学报. 2024(01): 25-37 . 百度学术
    3. 姚宇坤,杨振亚,陈凤,李国平. 江苏东南部典型城市臭氧污染特征与成因分析. 资源节约与环保. 2024(01): 95-100 . 百度学术
    4. 王桂霞,王妍然,孟赫,丁椿,邱晓国,张淼,许杨,解军. 山东省PM_(2.5)污染现状及预报效果对比分析. 环境监控与预警. 2024(02): 31-38 . 百度学术
    5. 韩力慧,兰童,程水源,王迎澳,齐超楠,田健,王海燕,韩登越,王慎澳. 唐山市PM_(2.5)和O_3的演变特征及其对大气复合污染的协同影响. 环境科学. 2024(08): 4385-4397 . 百度学术
    6. 谢金林,曹良中,张智,王妍,张辉,李澜,徐少文. PM_(2.5)浓度时空分布特征及驱动因子分析——以华中地区为例. 绿色科技. 2024(18): 163-169+179 . 百度学术
    7. 郑常准,赵锦慧,曾荣俊,唐豪,林铭淋,方艺霖. 宜荆荆地区2020—2022年大气污染物时空变化特征分析. 湖北大学学报(自然科学版). 2024(06): 820-830 . 百度学术
    8. 高衍新,孙文,杜英林,张晓. 气温与PM_(2.5)交互作用对呼吸系统疾病就诊风险的影响研究:基于山东省四城市分析. 环境卫生学杂志. 2023(01): 30-36 . 百度学术
    9. 张伶俐,王纯,郭栋,王冀. 大气环流异常对吉林省霾污染的影响. 气象灾害防御. 2023(04): 13-17 . 百度学术

    其他类型引用(6)

  • 加载中
计量
  • 文章访问数:  197
  • HTML全文浏览量:  41
  • PDF下载量:  1
  • 被引次数: 15
出版历程
  • 收稿日期:  2022-03-08
  • 网络出版日期:  2023-03-24

目录

    /

    返回文章
    返回