EFFECT OF DESULFURIZATION WASTEWATER ADDITION ON MERCURY RELEASE CHARACTERISTICS DURING COAL COMBUSTION
-
摘要: 为探究含氯脱硫废水溶液添加对煤燃烧时汞析出特性的影响,分别利用沉降炉和管式炉实验装置进行了3种煤在1200℃下的燃烧实验。实验时通过改变模拟脱硫废水溶液的添加量来控制燃煤中氯的质量分数分别为0.00%、0.02%、0.04%和0.06%。分析煤燃烧后烟气中汞浓度、吸收液、飞灰和煤灰中汞含量的变化情况发现:随着加氯量的增加,烟气中Hg0浓度逐渐降低,Hg2+浓度则逐渐升高,但对Hgt(气态总汞)浓度的提升效果相对较差。当加氯量为0.06%时,煤种B在沉降炉中燃烧后烟气中Hg0浓度下降约2.3 μg/m3,而Hg2+浓度提高约2.6 μg/m3,但Hgt浓度仅提高了0.3 μg/m3。氯的添加也会使飞灰中汞含量增加,煤灰中汞含量降低。通过综合对比分析沉降炉和管式炉实验结果发现:无论是否添加氯,煤在沉降炉中燃烧后烟气中Hg0比例均小于管式炉实验结果。当煤种B加氯量为0.06%时,在沉降炉和管式炉中燃烧后烟气中Hg0含量占比分别为50.6%和67.8%。此外,还发现3种煤粉在管式炉中加氯燃烧后汞的析出率提高趋势均较沉降炉明显。故含氯脱硫废水溶液的添加可以改变煤燃烧时汞的析出特性,且有利于促进烟气中Hg0的氧化,对燃煤烟气脱汞具有重要作用。Abstract: In this study, the combustion experiments of three kinds of coal at 1200℃ were implemented by using a drop-tube furnace and tubular furnace experimental devices respectively, to explore the effect of cchlorine-containing desulfurization wastewater addition on mercury release characteristics during coal combustion. In the experiment, the content of chlorine in coal was controlled by changing the mass fraction of simulated desulfurization wastewater solution to 0.00%, 0.02%, 0.04% and 0.06% respectively. Then by analysing the change of mercury concentration in flue gas, absorption solution, fly ash and coal ash after coal combustion, it was found that with the increase of chlorine dosage, the concentration of Hg0 in flue gas gradually decreased, while the concentrations of Hg2+ gradually increased. However, the effect of Hgt concentration was subtle. When the chlorine dosage was 0.06%, the Hg0 concentration in the flue gas after coal type B was burned in the drop-tube furnace decreased by about 2.3 μg/m3, but the concentrations of Hg2+ increased by about 2.6 μg/m3, but the concentration of Hgt only increased by 0.3 μg/m3. The addition of chlorine not only increased the mercury content in fly ash but also decreased the mercury content in coal ash. Through a comprehensive comparative analysis of the experimental results of drop-tube furnace and tubular furnace, it was found that the Hg0 ratio in the flue gas after coal combustion in drop-tube furnace was less than in tubular furnace, whether chlorine was added or not. When the chlorination amount of coal type B was 0.06%, the proportion of Hg0 after combustion in drop-tube furnace and tubular furnace was 50.6% and 67.8% respectively. In addition, it was also found that the mercury release rate of the three kinds of coal combustion after added chlorine in the tubular furnace was more obvious than that in drop-tube furnace. Therefore, the addition of chlorine-containing desulfurization wastewater solution could not only change the release characteristics of mercury during coal combustion, but also promoted the oxidation of Hg0 in flue gas, which played an important role in mercury removal from coal-fired flue gas.
-
Key words:
- coal /
- desulfurization wastewater /
- mercury /
- release characteristic
-
[1] CAO Y S, ZHANG Z, WU J W, et al. A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases[J]. Environmental Science and Technology, 2013, 47(19):10813-10823. [2] HU Y A, CHENG H F. Control of mercury emissions from stationary coal combustion sources in China:current status and recommendations[J]. Environ Poll, 2016, 218:1209-1221. [3] Natural Resources Defense Council. Summary of recent mercury emission limits for power plants in the united states and china[R]. United States:Natural Resources Defense Council, 2012. [4] United States Environmental Protection Agency. Mercury and air toxics standards[S]. United States:Environmental Protection Agency, 2013. [5] 环境保护部. 火电厂大气污染物排放标准:GB 13223-2011[S]. 北京:中国标准出版社, 2012. [6] 姜超. 脱硫废水零排放耦合燃煤汞排放控制的实验研究及量子化学模拟[D]. 南京:东南大学, 2019. [7] WU Y, STREETS D G, WANG S X, et al. Uncertainties in estimating mercury emissions from coal-fired power plants in China[J]. Atmospheric Chemistry & Physics, 2010, 9(6):2937-2946. [8] 王运军. 燃煤烟气汞形态转化及汞吸附机理研究[D]. 南京:东南大学, 2010. [9] XU W Q, WANG H R, ZHU T Y, et al. Mercury removal from coal combustion flue gas by modified fly ash[J]. Journal of Environmental Sciences, 2013, 25(2):393-398. [10] ZHAN F M, LI C T, ZENG G Z, et al. Experimental study on oxidation of elemental mercury by UV/Fenton system[J]. Chemical Engineering Journal, 2013, 232:81-88. [11] PRECIADO I, YOUNG T R, SILCOX G D. Mercury oxidation by halogens under air-fired and oxygen-fired conditions[J]. Energy and Fuels, 2013, 28:1255-1261. [12] 楼波, 马晓茜, 蔡睿贤. 煤燃烧中的汞转化模型和数值模拟[J]. 燃料化学学报, 2006, 34(4):412-416. [13] 张梦泽, 董勇, 王鹏, 等. 燃煤烟气中单质汞吸附与氧化机理研究进展[J]. 化工进展, 2014, 33(6):1582-1595. [14] 曾芳, 刘凤, 金飞, 等. 模拟烟气中Hg排放形态的数值分析[J]. 动力工程学报, 2017, 37(6):483-488,507. [15] 赵锋华, 任德贻, 张旺. 煤中氯的地球化学特征及逐级化学提取[J]. 中国矿业大学学报, 1999, 28(1):61-64. [16] 段钰锋, 朱纯, 佘敏, 等. 燃煤电厂汞排放与控制技术研究进展[J]. 洁净煤技术, 2019, 25(2):1-17. [17] ZHUANG Y, LAUMB J, LIGGETT R, et al. Impacts of acid gases on mercury oxidation across SCR catalyst[J]. Fuel Processing Technology, 2007, 88(10):929-934. [18] 董勇, 喻敏, 王鹏, 等. CaCl2添加对热解煤中汞析出规律影响的实验研究[J]. 燃料化学学报, 2014, 42(1):31-36. [19] 睢辉, 董勇, 张梦泽, 等. CaCl2添加对煤热解过程中汞形态转化影响的实验[J]. 山东大学学报(工学版), 2014, 44(2):89-94. [20] 王鹏, 董勇, 喻敏, 等. 煤中汞赋存形态及其热解时析出规律研究[J]. 燃料化学学报, 2014, 42(2):146-149. [21] 吴辉. 燃煤汞释放及转化的实验与机理研究[D]. 武汉:华中科技大学, 2011. [22] 王泉海. 煤燃烧过程中汞排放及其控制的实验及机理研究[D]. 武汉:华中科技大学, 2006. [23] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 煤的工业分析方法:GB/T 212-2008[S]. 北京:中国标准出版社, 2008. [24] 中华人民共和国国家质量监督检验检疫总局. 煤的元素分析方法:GB/T 476-2001[S]. 北京:中国标准出版社, 2001. [25] 美国-美国材料与试验协会(US-ASTM). 通过直接燃烧分析煤和煤燃烧残渣中总汞的标准试验方法:法:ASTM D6722-01[S]. https://www.cssn.net.cn/cssn/index. [26] 国家环境保护局规划标准处, 北京市环境保护监测中心, 中国环境监测总站. 水质铜、锌、铅、镉的测定原子吸收分光光度法:GB 7475-87[S]. 北京:中国标准出版社, 1987. [27] 国家环境保护局规划标准处, 中国环境监测总站. 水质氟化物的测定离子选择电极法:GB 7484-87[S]. 北京:中国标准出版社, 1987. [28] 国家环境保护局标准处, 水电部水质试验研究中心, 中国环境监测总站. 水质氯化物的测定硝酸银滴定法:GB 11896-89[S]. 北京:中国标准出版社, 1989. [29] PRESTO A A, GRANITE E J. Survey of catalysts for oxidation of mercury in flue gas[J]. Environmental Science and Technology, 2006, 40(18):5601-5609. [30] PAN H, MINET R, BENSON S, et al. Process for converting hydrogen chloride to chlorine[J]. Ind. Eng. Chem. Res, 1994, 33:2296-2299. [31] WU H, LIU H, WANG Q H, et al. Experimental study of homogeneous mercury oxidation under O2/CO2 atmosphere[J]. P Combust Inst, 2013, 34(2):2847-2854. [32] ZHOU J S, LUO Z Y, HU C X, et al. Factors impacting gaseous mercury speciation in postcombustion[J]. Energ Fuel, 2007, 21(2):491-495. [33] SURIYAWONG A, GAMBLE M, LEE M H, et al. Submicrometer particle formation and mercury speciation under O2-CO2 coal combustion[J]. Energy & Fuels 2006, 20, 2357-2363. [34] LIU K L, GAO Y, KELLIE S,et al. A study of mercury removal in FBC systems fired with high-chlorine coals[J]. Combust Sci Technol,2001, 164(1):145-162. [35] 肖国振, 仲兆平, 姜超, 等. 氯添加对燃煤过程中汞析出规律的影响[J]. 化工进展, 2021, 40(12):6557-6563. [36] 喻敏. CaCl2添加对煤热解汞析出规律影响的实验研究[D]. 济南:山东大学, 2013. [37] 肖国振, 仲兆平, 姜超, 等. 氯添加对燃煤过程中汞析出规律的影响[J]. 化工进展, 2021, 40(12):6557-6563. [38] 喻敏. CaCl2添加对煤热解汞析出规律影响的实验研究[D]. 济南:山东大学, 2013.
点击查看大图
计量
- 文章访问数: 122
- HTML全文浏览量: 30
- PDF下载量: 1
- 被引次数: 0