PREPARATION OF GOETHITE-MODIFIED BIOCHAR AND ITS ADSORPTION CAPACITY ON Cr(Ⅵ)
-
摘要: 在不同热解温度及原料配比条件下,采用水解共沉淀方法制备针铁矿改性生物炭材料(GMB),借助SEM-EDS、XRD、FTIR、XPS进行表征,并进行Cr (Ⅵ)吸附实验,探究吸附性能和机理。结果表明:1)经改性后生物炭表面生成了羟基氧化铁(FeOOH),吸附能力有大幅提升;2)热解温度为600℃,生物炭与Fe (NO3)3·9H2O的质量比为1:12时制备的GMB600-12表现出最佳吸附性能,最大吸附容量为20.67 mg/g;3)准二级动力学揭示Cr (Ⅵ)的吸附以化学吸附为主,Langmuir和Freundlich模型都能很好地描述GMB对Cr (Ⅵ)的吸附特征;4) XPS的结果进一步表明GMB去除水溶液中Cr (Ⅵ)是氧化还原和表面吸附协同作用的结果。Abstract: Goethite-modified biochar (GMB) was prepared by hydrolytic co-precipitation under different pyrolysis temperatures and raw material ratios, characterized by SEM-EDS, XRD, FTIR and XPS. Adsorption experiments of Cr(Ⅵ) for exploring the adsorption performance and mechanism were carried out. The results showed that:1) modification with goethite formed iron hydroxyl oxide (FeOOH) on the surface of biochar and greatly improved its adsorption capacity; 2) the best adsorption capacity of 20.67 mg/g was performed by modified biochar GMB600-12 with pyrolysis temperature at 600℃ and mass ratio of biochar and Fe(NO3)3·9H2O at 1:12; 3) the adsorption of Cr(Ⅵ) was mainly chemisorption as revealed by quasi-second-order kinetics, and both Langmuir model and Freundlich model could well describe the adsorption characteristics of Cr(Ⅵ) by GMB; 4) the removal of Cr(Ⅵ) from aqueous solution by GMB is a synergistic effect of redox and surface adsorption.
-
Key words:
- biochar /
- goethite /
- Cr(Ⅵ) /
- absorption
-
[1] CUI X Q, LU M, KHAN M B, et al. Hydrothermal carbonization of different wetland biomass wastes:phosphorus reclamation and hydrochar production[J]. Waste Management, 2020, 102:106-113. [2] ZHANG Z K, ZHU Z Y, SHEN B X, et al. Insights into biochar and hydrochar production and applications:a review[J]. Energy, 2019, 171:581-598. [3] SINGH E, KUMAR A, MISHRA R, et al. Pyrolysis of waste biomass and plastics for production of biochar and its use for removal of heavy metals from aqueous solution[J]. Bioresource Technology, 2021, 320:124278. [4] ABDELHADI S O, DOSORETZ C G, RYTWO G, et al. Production of biochar from olive mill solid waste for heavy metal removal[J]. Bioresource Technology, 2017, 244:759-767. [5] YAO Z Y, YOU S M, GE T S, et al. Biomass gasification for syngas and biochar co-production:energy application and economic evaluation[J]. Applied Energy, 2018, 209:43-55. [6] de CAPRARIIS B, de FILIPPIS P, HERNANDEZ A D, et al. Pyrolysis wastewater treatment by adsorption on biochars produced by poplar biomass[J]. Journal of Environmental Management, 2017, 197:231-238. [7] XU Y G, BAI T X, LI Q, et al. Influence of pyrolysis temperature on the characteristics and lead(Ⅱ) adsorption capacity of phosphorus-engineered poplar sawdust biochar[J]. Journal of Analytical and Applied Pyrolysis, 2021, 154:105010. [8] LIU S B, HUANG B X, CHAI L Y, et al. Enhancement of As(Ⅴ) adsorption from aqueous solution by a magnetic chitosan/biochar composite[J]. Rsc Advances, 2017, 7(18):10891-10900. [9] LI R H, WANG J J, GASTON L A, et al. An overview of carbothermal synthesis of metal-biochar composites for the removal of oxyanion contaminants from aqueous solution[J]. Carbon, 2018, 129:674-687. [10] 赵洁,贺宇宏,张晓明,等. 酸碱改性对生物炭吸附Cr(Ⅵ)性能的影响[J]. 环境工程, 2020, 38(6):28-34. [11] ZHOU Y M, GAO B, ZIMMERMAN A R, et al. Sorption of heavy metals on chitosan-modified biochars and its biological effects[J]. Chemical Engineering Journal, 2013, 231:512-518. [12] 席冬冬,李晓敏,熊子璇,等. 生物炭负载纳米零价铁对污染土壤中铜钴镍铬的协同去除[J]. 环境工程, 2020, 38(6):58-66. [13] 袁健,钱雅洁,薛罡,等. 活性污泥水热碳化法制备磁性炭及对水体Cd2+及Pb2+的去除[J]. 环境工程, 2020, 38(2):55-62. [14] GUO X T, ZHANG J, GE J H, et al. Sorption and photodegradation of tylosin and sulfamethazine by humic acid-coated goethite[J]. Rsc Advances, 2015, 5(122):100464-100471. [15] WANG H, ZHU J, FU Q L, et al. Adsorption of phosphate on pure and humic acid-coated ferrihydrite[J]. Journal of Soils and Sediments, 2015, 15(7):1500-1509. [16] LIU H, LU X C, LI M, et al. Structural Incorporation of Manganese into Goethite and Its Enhancement of Pb(Ⅱ) Adsorption[J]. Environmental Science & Technology, 2018, 52(8):4719-4727. [17] QIN H B, YANG S T, TANAKA M, et al. Scandium immobilization by goethite:surface adsorption versus structural incorporation[J]. Geochimica Et Cosmochimica Acta, 2021, 294:255-272. [18] 葛军. Na+、K+、Ca2+与Cr6+在活性炭上的竞争吸附及其应用研究[D]. 马鞍山:安徽工业大学, 2018. [19] URONE P F. Stability of colorimetric reagent for chromium, s-diphenylcarbazide, in various solvents[J]. Analytical Chemistry. 1955, 27(8):1354-1355. [20] YANG Y, SUN K, HAN L F, et al. Effect of minerals on the stability of biochar[J]. Chemosphere, 2018, 204:310-317. [21] RONSSE F, van HECKE S, DICKINSON D, et al. Production and characterization of slow pyrolysis biochar:influence of feedstock type and pyrolysis conditions[J]. Global Change Biology Bioenergy, 2013, 5(2):104-115. [22] ZHU S H, ZHAO J J, ZHAO N, et al. Goethite modified biochar as a multifunctional amendment for cationic Cd(Ⅱ), anionic As(Ⅲ), roxarsone, and phosphorus in soil and water[J]. Journal of Cleaner Production, 2020, 247:119579. [23] CHEN B L, CHEN Z M, LV S F. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate[J]. Bioresource Technology, 2011, 102(2):716-723. [24] 朱司航,赵晶晶,尹英杰,等. 针铁矿改性生物炭对砷吸附性能[J]. 环境科学, 2019, 40(6):2773-2782. [25] ZHANG Z R, YU H Q, ZHU R X, et al. Phosphate adsorption performance and mechanisms by nanoporous biochar-iron oxides from aqueous solutions[J]. Environmental Science and Pollution Research, 2020, 27(22):28132-28145. [26] HE R, YUAN X Z, HUANG Z L, et al. Activated biochar with iron-loading and its application in removing Cr(Ⅵ) from aqueous solution[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2019, 579:123642. [27] 张守秋,岑洁,吕德义,等. 纳米零价铁去除水中重金属铅、铬离子的研究[J]. 高校化学工程学报, 2019, 33(3):524-532. [28] 陈林,平巍,闫彬,等. 不同制备温度下污泥生物炭对Cr(Ⅵ)的吸附特性[J]. 环境工程, 2020, 38(8):119-124.
点击查看大图
计量
- 文章访问数: 145
- HTML全文浏览量: 17
- PDF下载量: 5
- 被引次数: 0