中文核心期刊
CSCD来源期刊(核心库)
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微尺度技术精准评估2种覆盖剂对砷的钝化效果

燕文明 蒋超 陈翔 麻林 颜秉龙 何翔宇 李敏娟 田玢 吴挺峰

燕文明, 蒋超, 陈翔, 麻林, 颜秉龙, 何翔宇, 李敏娟, 田玢, 吴挺峰. 基于微尺度技术精准评估2种覆盖剂对砷的钝化效果[J]. 环境工程, 2022, 40(11): 127-133,151. doi: 10.13205/j.hjgc.202211018
引用本文: 燕文明, 蒋超, 陈翔, 麻林, 颜秉龙, 何翔宇, 李敏娟, 田玢, 吴挺峰. 基于微尺度技术精准评估2种覆盖剂对砷的钝化效果[J]. 环境工程, 2022, 40(11): 127-133,151. doi: 10.13205/j.hjgc.202211018
YAN Wenming, JIANG Chao, CHEN Xiang, MA Lin, YAN Binglong, HE Xiangyu, LI Minjuan, TIAN Fen, WU Tingfeng. EFFECT OF TWO COVERING AGENTS ON PASSIVATION OF SIMULATED ARSENIC CONTAMINATED SEDIMENTS BY MICROSCALE TECHNIQUES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 127-133,151. doi: 10.13205/j.hjgc.202211018
Citation: YAN Wenming, JIANG Chao, CHEN Xiang, MA Lin, YAN Binglong, HE Xiangyu, LI Minjuan, TIAN Fen, WU Tingfeng. EFFECT OF TWO COVERING AGENTS ON PASSIVATION OF SIMULATED ARSENIC CONTAMINATED SEDIMENTS BY MICROSCALE TECHNIQUES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 127-133,151. doi: 10.13205/j.hjgc.202211018

基于微尺度技术精准评估2种覆盖剂对砷的钝化效果

doi: 10.13205/j.hjgc.202211018
基金项目: 

中科院"西部之光"项目(E129030101);国家自然科学基金项目(41971047);湖南省水利基金(XSKJ2019081-42);水文水资源与水利工程科学国家重点实验室"一带一路"水与可持续发展科技基金(2020491811);江苏省水利科技项目(2021049)

详细信息
    作者简介:

    燕文明(1982-),女,高级实验师,主要研究方向为水环境保护与生态修复。ywm0815@163.com

    通讯作者:

    吴挺峰,男,副研究员,主要研究方向为环境水文及水环境保护。tfwu@niglas.ac.cn

EFFECT OF TWO COVERING AGENTS ON PASSIVATION OF SIMULATED ARSENIC CONTAMINATED SEDIMENTS BY MICROSCALE TECHNIQUES

  • 摘要: 为探究原位覆盖材料对表层沉积物砷(As)的钝化效果,选择可推广应用的锁磷剂(LMB)和增氧剂(CaO2+CaCO3),通过室内培养实验,应用微电极技术和高分辨率平衡式间隙水采集技术(HR-Peeper),研究覆盖材料对沉积物中砷(As)钝化的影响机制。实验设置锁磷剂组、增氧剂组和对照组共3个处理组,分为4个实验阶段(分别以加入覆盖剂后的第4,30,90,150天为节点)。结果表明:锁磷剂与增氧剂可有效去除沉积物中的As。锁磷剂覆盖最高可降低50.86%的溶解态As,影响深度可达到-100 mm,有效期150 d。增氧剂覆盖最高可降低55.52%的溶解态As,影响深度为-100 mm,90 d后效果减弱。锁磷剂与增氧剂覆盖显著降低了溶解态As的释放通量。锁磷剂上的镧离子对砷酸盐有很强的亲和力,可去除溶液中的砷酸盐。此外,锁磷剂和增氧剂增加了沉积物-水界面中的Eh值,使Fe (Ⅱ)被氧化成Fe (Ⅲ),吸附As从而降低As浓度。此外,溶解态As与Fe (Ⅱ)在沉积物剖面上同步变化且显著正相关(P<0.001),证实了Fe和As的耦合释放机制。研究结果可为淡水生态系统中As污染的控制和治理提供支撑。
  • [1] 曲久辉, 贺泓, 刘会娟. 典型环境微界面及其对污染物环境行为的影响[J]. 环境科学学报, 2009, 29(1):2-10.
    [2] 张鹂, 郭朝晖, 冉洪珍, 等. 含砷矿区河流沉积物粒径组成及砷赋存特征[J]. 环境工程, 2021, 39(12):38-43

    ,119.
    [3] 吴万富, 徐艳, 史德强, 等. 我国河流湖泊砷污染现状及除砷技术研究进展[J]. 环境科学与技术, 2015, 38(6):190-197.
    [4] 张楠, 韦朝阳, 杨林生. 淡湖泊生态系统中砷的赋存与转化行为研究进展[J]. 生态学报, 2013, 33(2):337-344.
    [5] 李子成, 邓义祥, 郑丙辉. 中国湖库水环境质量现状调查分析[J]. 环境科学与技术, 2012, 35(10):201-205.
    [6] LIU X, ZENG B A, LIN G. Arsenic (As) contamination in sediments from coastal areas of China[J]. Marine Pollution Bulletin, 2022, 175:113350.
    [7] TANG Y, ZHANG M Y, SUN G X, et al. Impact of eutrophication on arsenic cycling in freshwaters[J]. Water Research, 2019, 150:191-199.
    [8] SHENG H, LIU H, WANG C Y, et al. Analysis of cyanobacteria bloom in the Waihai part of Dianchi Lake, China[J]. Ecological Informatics, 2012, 10:37-48.
    [9] YANG F, ZHANG N, WEI C Y, et al. Arsenic speciation in organisms from two large shallow freshwater lakes in China[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 98(2):226-233.
    [10] 叶倩玲, 金歆, 陈箫, 等. La2O3纳米颗粒对水溶液中As(Ⅲ)的吸附[J]. 环境工程, 2020, 38(1):105-134.
    [11] 董俊文,高培培,孙洪欣, 等. 设施叶菜类蔬菜重金属镉、铅和砷累积特征及健康风险评价[J]. 环境科学, 2022, 43(1):481-489.
    [12] LEE C P, ZHU C H, SU C C. Increased prevalence of Parkinson's disease in soils with high arsenic levels[J]. Parkinsonism & Related Disorders, 2021, 88:19-23.
    [13] RATHI B S, KUMAR P S. A review on sources, identification and treatment strategies for the removal of toxic Arsenic from water system[J]. Journal of Hazardous Materials, 2021, 418(1):126299.
    [14] STRAUSS J A, BAZHKO V, VENTRUTI G, et al. Arsenic behavior during the treatment of refractory gold ores via POX:characterization of Fe-AsO4-SO4 precipitates[J]. Hydrometallurgy, 2021, 203:105616.
    [15] 李鹏. 含砷废渣填埋场及矿井渗滤液除砷工艺研究[J]. 湖南有色金属, 2021, 37(3):63-66.
    [16] NAINCY S, JIWAN S, REDDY K J. Removal of arsenic from aqueous solution by novel iron andiron-zirconium modified activated carbon derived from chemical carbonization of Tectona grandis sawdust:isotherm, kinetic, thermodynamic and breakthrough curve modelling[J]. Environmental Research, 2021, 200:111431.
    [17] 孙晔洋,周畅,甘永海, 等负载型钛凝胶的制备及其吸附去除三价砷的性能[J].环境科学,2021,42(11):5460-5471.
    [18] 蒲生彦,侯国庆,吕雪, 等. 过氧化钙缓释技术在地下水污染修复中的应用研究[J]. 工业水处理, 2020, 40(8):1-6

    ,22.
    [19] 张巧颖, 杜瑛珣, 罗春燕,等. 镧改性膨润土钝化湖泊中的磷及其生态风险的研究进展[J]. 湖泊科学,2019, 31(6):1499-1509.
    [20] CUI J Z, WANG D, LIN J, et al. New application of lanthanum-modified bentonite (Phoslock®) for immobilization of arsenic in sediments[J]. Environmental Science and Pollution Research, 2021, 28(2):2052-2062.
    [21] COPETTI D, FINSTERLE K, MARZIALI L, et al. Eutrophication management in surface waters using lanthanum modified bentonite:a review[J]. Water Research, 2016, 97:162-174.
    [22] WANG Y, WANG W H, LU X X, et al. Impact of calcium peroxide dosage on the control of nutrients release from sediment in the anoxic landscape water[J]. Environmental Science and Pollution Research, 2019, 26(36):37070-37081.
    [23] SONG X J, LI D P, ZHAO Z H, et al. The effect of microenvironment in the sediment on phosphorus immobilization under capping with ACPM and Phoslock®[J]. Environmental Science and Pollution Research, 2020, 27(13):15440-15453.
    [24] YAN W M, CHEN M S, LIU L, et al. Mechanism of phosphorus mobility in sediments with larval (Propsilocerus akamusi) bioturbation[J]. Environmental Science and Pollution Research, 2020, 27(7):7538-7548.
    [25] XING X L, CHEN M S, WU Y X, et al. The decomposition of macrozoobenthos induces large releases of phosphorus from sediments[J]. Environmental Pollution, 2021, 283(19):117104.
    [26] BOUDREAU B P. The diffusive tortuosity of fine-grained unlithified sediments[J]. Geochimica Et Cosmochimica Acta, 1996, 60(16):3139-3142.
    [27] LI Y H. Diffusion of ions in seawater and deep sea sediments[J]. Geochimica Et Cosmochimica Acta, 1974, 38:708.
    [28] ZHONG Z X, LU X J, YAN R, et al. Phosphate sequestration by magnetic La-impregnated bentonite granules:a combined experimental and DFT study[J]. Science of the Total Environment, 2020, 738:139636.
    [29] ZHONG Z X, YU G W, MO W T, et al. Enhanced phosphate sequestration by Fe(Ⅲ) modified biochar derived from coconut shell[J]. RSC Advances, 2019, 9(18):10425-10436.
    [30] LUO W H, HUANG Q D, ZHANG X M, et al. Lanthanum/Gemini surfactant-modified montmorillonite for simultaneous removal of phosphate and nitrate from aqueous solution[J]. Journal of Water Process Engineering, 2020, 33:101036.
    [31] RASTINFARD A, NAZARPAK M H, MOZTARZADEH F. Controlled chemical synthesis of CaO2 particles coated with polyethylene glycol:characterization of crystallite size and oxygen release kinetics[J]. RSC Advances, 2018, 8(1):91-101.
    [32] 钟松雄, 尹光彩, 陈志良, 等.Eh、pH和铁对水稻土砷释放的影响机制[J].环境科学, 2017, 38(6):2530-2537.
    [33] FROHNE T, RINKLEBE J, DIAZ-BONE R A, et al. Controlled variation of redox conditions in a floodplain soil:impact on metal mobilization and biomethylation of arsenic and antimony[J]. Geoderma, 2011, 160(3):414-424.
    [34] RINKLEBE J, SHAHEEN S M, FROHNE T. Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil[J]. Chemosphere, 2016, 142:41-47.
    [35] 辜娇峰, 周航, 贾润语, 等. 三元土壤调理剂对田间水稻镉砷累积转运的影响[J]. 环境科学, 2018, 39(4):1910-1917.
    [36] 吕紫娟, 王华伟, 吴雅静, 等. 纳米零价铁物相转变对砷污染土壤稳定化效果和潜在毒性的影响研究[J]. 环境工程, https://kns.cnki.net/kcms/detail/11.2097.X.20210825.1803.002.html, 2021-08-26.
    [37] DING S M, SUN Q, CHEN X, et al. Synergistic adsorption of phosphorus by iron in lanthanum modified bentonite (Phoslock®):new insight into sediment phosphorus immobilization[J]. Water Research, 2018, 134(5):32-43.
    [38] SINGH R, SINGH S, PARIHAR P, et al. Arsenic contamination, consequences and remediation techniques:a review[J]. Ecotoxicology and Environmental Safety, 2015,112:247-270.
    [39] 吴萍萍, 李录久, 李敏.生物炭负载铁前后对复合污染土壤中Cd、Cu、As淋失和形态转化的影响研究[J].环境科学学报, 2017, 37(10):3959-3967.
    [40] YIN N Y, CUI Y S, ZHANG Z N, et al. Bioaccessibility and dynamic dissolution of arsenic in contaminated soils from Hunan, China[J].Journal of Soils and Sediments, 2015, 15(3):584-593.
    [41] OLYAIE E, BANEJAD H, AFKHAMI A, et al. Development of a cost-effective technique to remove the arsenic contamination from aqueous solutions by calcium peroxide nanoparticles[J]. Separation and Purification Technology, 2012, 95:10-15.
    [42] GAO M R, SUN Q, WANG J H, et al. Investigation of the combined use of capping and oxidizing agents in the immobilization of arsenic in sediments[J]. Science of the Total Environment, 2021, 782(8):146930.
    [43] FANG Z Y, LI Z X, ZHANG X L, et al. Enhanced arsenite removal from silicate-containing water by using redox polymer-based Fe(Ⅲ) oxides nanocomposite[J]. Water Research, 2021, 189(2):116673.
    [44] YANG T, WU S S, LIU C P, et al. Efficient degradation of organoarsenic by uv/chlorine treatment:kinetics, mechanism, enhanced arsenic removal, and cytotoxicity[J]. Environmental Science & Technology, 2021, 55(3):2037-2047.
    [45] 林龙勇, 阎秀兰, 杨硕. 铁铈氧化物对土壤As(Ⅴ)和P的稳定化效果[J]. 环境科学, 2019, 40(8):3785-3791.
    [46] ZHANG T T, ZHAO Y L, BAI H Y, et al. Efficient As(Ⅲ) removal directly as basic iron arsenite by in-situ generated Fe(Ⅲ) hydroxide from ferrous sulfate on the surface of CaCO3[J]. Applied Surface Science, 2019, 493:569-576.
    [47] 刘玉丹, 谢鑫, 谢莉鸿,等. 牛粪发酵沼液DOM与Fe(Ⅲ)离子络合机制研究[J]. 中国环境科学, 2021, 41(2):771-777.
  • 加载中
计量
  • 文章访问数:  74
  • HTML全文浏览量:  16
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-03
  • 网络出版日期:  2023-03-24

目录

    /

    返回文章
    返回