CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

5种矿区土著植物对铅污染土壤的修复潜力研究

卢楠 魏样 李燕

卢楠, 魏样, 李燕. 5种矿区土著植物对铅污染土壤的修复潜力研究[J]. 环境工程, 2022, 40(11): 134-142. doi: 10.13205/j.hjgc.202211019
引用本文: 卢楠, 魏样, 李燕. 5种矿区土著植物对铅污染土壤的修复潜力研究[J]. 环境工程, 2022, 40(11): 134-142. doi: 10.13205/j.hjgc.202211019
LU Nan, WEI Yang, LI Yan. PHYTOREMEDIATION POTENTIAL OF FIVE NATIVE PLANTS IN SOILS CONTAMINATED WITH LEAD IN A MINING AREA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 134-142. doi: 10.13205/j.hjgc.202211019
Citation: LU Nan, WEI Yang, LI Yan. PHYTOREMEDIATION POTENTIAL OF FIVE NATIVE PLANTS IN SOILS CONTAMINATED WITH LEAD IN A MINING AREA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 134-142. doi: 10.13205/j.hjgc.202211019

5种矿区土著植物对铅污染土壤的修复潜力研究

doi: 10.13205/j.hjgc.202211019
基金项目: 

陕西地建-西安交大土地工程与人居环境技术创新中心开放基金项目(2021WHZ0094);陕西省土地整治重点实验室开放基金项目(2019-JC04);陕西省土地工程建设集团内部科研项目(DJNY2022-30)

详细信息
    作者简介:

    卢楠(1987-),女,硕士,高级工程师,主要研究方向为土地工程,污染土地修复。lunan8836@126.com

PHYTOREMEDIATION POTENTIAL OF FIVE NATIVE PLANTS IN SOILS CONTAMINATED WITH LEAD IN A MINING AREA

  • 摘要: 为评估我国西北某矿区茵陈蒿、蒲公英、苜蓿、大叶苦菜和车前草5种土著作物对含铅(Pb)土壤的修复潜力,采用盆栽实验,设置4种不同Pb含量水平(0、2‰、3‰和5‰,质量分数),测定作物不同组织器官中和种植前后土壤中Pb含量,以及根际与非根际土壤微生物生物量碳含量、过氧化氢酶活性等指标。结果表明:茵陈蒿和车前草适合种植于铅含量为2‰、3‰、5‰的土壤中,可去除12%~32%的土壤Pb,车前草根系和茵陈蒿茎叶对Pb的累积量最高分别达到3617,720 mg/kg,显著高于其他植物,作为土壤铅污染修复植物的潜力较大。根际土壤微生物生物量碳含量比非根际土壤微生物生物量碳含量高2.37%~13.89%。土壤Pb抑制了根际与非根际土壤过氧化氢酶活性,使其活性低于对照组0.44%~22.3%,根际土壤过氧化氢酶活性比非根际过氧化氢酶活性高0.89%~8.09%。研究结果可为Pb污染矿区废弃地植物修复和土壤环境质量评价提供理论依据。
  • [1] CETIN M, ALJAMA A M O, ALRABITI O B M, et al. Determination and mapping of regional change of Pb and Cr pollution in Ankara City Center[J]. Water Air Soil Pollution, 2022, 233:163.
    [2] ASGARI LAJAYER B, KHADEM MOGHADAM N, MAGHSOODI, M R, et al. Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants:mechanisms and efficiency improvement strategies[J]. Environmental Science & Pollution Research, 2019, 26:8468-8484.
    [3] KIM H T, LEE T G. A simultaneous stabilization and solidification of the top five most toxic heavy metals (Hg, Pb, As, Cr, and Cd)[J]. Chemosphere, 2017, 178:479-485.
    [4] WANG L, CHEN L, GUO B L, et al. Red mud-enhanced magnesium phosphate cement for remediation of Pb and As contaminated soil[J]. Journal of Hazardous Materials, 2020, 400:123317.
    [5] LUO Y, TU C. The research and development of technology for contaminated site remediation. Twenty Years of Research and Development on Soil Pollution and Remediation in China[M]. Springer, Singapore, 2018, Chapter 48, pp. 785-798.
    [6] ASHRAF S, ALI Q, ZAHIR Z A, et al. Phytoremediation:environmentally sustainable way for reclamation of heavy metal polluted soils[J]. Ecotoxicology and Environmental Safety, 2019, 174:714-727.
    [7] AFONSO T F, DEMARCO C F, PIENIZ S, et al. Analysis of baccharis dracunculifolia and baccharis trimera for phytoremediation of heavy metals in copper mining tailings area in southern Brazil[J]. Applied Biochemistry and Biotechnology, 2022, 194(2):694-708.
    [8] EGENDORF S P, GROFFMAN P, MOORE G, et al. The limits of lead (Pb) phytoextraction and possibilities of phytostabilization in contaminated soil:a critical review[J]. International Journal of Phytoremediation, 2020, 6:1-15.
    [9] ABOELKASSEM A, ALZAMEL N M, ALZAIN M N, et al. Effect of Pb-contaminated water on Ludwigia stolonifera (Guill. & Perr.) P.H. Raven physiology and phytoremediation performance[J]. Plants, 2022, 11, 636.
    [10] DINH N, ANTONY V, MULLIGAN D R, et al. Zinc and lead accumulation characteristics and in vivo distribution of Zn2+ in the hyperaccumulator Noccaea caerulescens elucidated with fluorescent probes and laser confocal microscopy[J]. Environmental & Experimental Botany, 2018, 147:1-12.
    [11] 唐宇力, 钱萍, 张海珍,等. 8种观赏水湿生植物对重金属Cd和Pb的吸收固定能力[J]. 环境工程学报, 2017, 11(9):5313-5319.
    [12] 袁鑫奇, 俞乃琪, 郭兆来,等. 会泽铅锌矿区废弃地优势草本植物的重金属富集特征[J]. 生态与农村环境学报, 2022, 38(3):399-408.
    [13] 林诗悦, 冯义彪. 镉锌铅复合污染土壤的超富集植物修复能力研究[J]. 环境工程, 2017, 35(3):168-173.
    [14] 马志良,赵文强,刘美.高寒灌丛生长季根际和非根际土壤多酚氧化酶和过氧化氢酶活性对增温的响应[J].应用生态学报,2019,30(11):3681-3688.
    [15] 陈海燕, 樊霆, 张泽,等. 不同植物修复重金属复合污染土壤对土壤中微生物数量与酶活性的影响[J]. 环境保护, 2018, 46(1):65-69.
    [16] 周淑艳. 气候变化背景下富平县水资源开发利用现状及优化配置[D]. 西安:陕西师范大学, 2009.
    [17] GB 15618-2018. 土壤环境质量农用地土壤污染风险管控标准(试行)[S].
    [18] NY/T 1121.22-2010. 土壤检测第22部分:土壤田间持水量的测定——环刀法[S].
    [19] LU N, LI G, HAV J C, et al. Investigation of lead and cadmium contamination in mine soil and metal accumulation in selected plants growing in a gold mining area[J]. Applied Ecology and Environmental Research, 2019, 17(5):10587-10597.
    [20] 孙凯,刘娟,凌婉婷.土壤微生物量测定方法及其利弊分析[J].土壤通报,2013, 44(4):1010-1016.
    [21] 杨兰芳,曾巧,李海波,等.紫外分光光度法测定土壤过氧化氢酶活性[J].土壤通报,2011,42(10):207-210.
    [22] CHANU L B, GUPTA A. Phytoremediation of lead using ipomoea aquatica forsk in hydroponic solution[J]. Chemosphere, 2016, 156:407-411.
    [23] BRUNETTI G, RUTA C, TRAVERSA A, et al. Remediation of a heavy metals contaminated soil using mycorrhized and non-mycorrhized Helichrysum italicum (Roth) Don[J]. Land Degradation and Development, 2018, 29(1):91-104.
    [24] AV A, ML B, RMKY A, et al. Uptake and partitioning of metals in the Australian saltmarsh halophyte, samphire (Sarcocornia quinqueflora)[J]. Aquatic Botany, 2019, 156:25-37.
    [25] ROMEH A, KHAMIS M A, METWALLY S M. Potential of Plantago major L. for phytoremediation of Lead-contaminated soil and water[J]. Water Air Soil Pollution, 2016, 227:9.
    [26] 江明艳, 蔡心怡. 铅胁迫下地被竹的生长响应与铅富集、解毒策略[J]. 世界竹藤通讯, 2021, 19(1):65-71

    ,73.
    [27] ADEJUMO S A, TIWARI S, SHINDE V, et al. Heavy metal (Pb) accumulation in metallophytes as influenced by the variations in rhizospheric and non-rhizospheric soils physico-chemical characteristics[J]. International Journal of Phytoremediation, 2018, 20(3):237-248.
    [28] ABDOLLAHI S, GOLCHIN A, SHAHRYARI F, et al. PGPR inoculation of a contaminated soil affects plant growth and phytoavailability of Cd and Pb[J]. Archives of Agronomy and Soil Science, 2022,68(5):579-596.
    [29] 王小平, 马延龙, 姚一铭,等. 应用于碱性土壤上重金属污染的超积累植物种植研究[J]. 有色金属:冶炼部分, 2021(11):107-112.
    [30] BUSCAROLI A. An overview of indexes to evaluate terrestrial plants for phytoremediation purposes[J]. Ecological Indicators, 2017, 82:367-380.
    [31] EID E M, GALAL T M, SEWELAM N A, et al. Phytoremediation of heavy metals by four aquatic macrophytes and their potential use as contamination indicators:a comparative assessment[J]. Environmental Science and Pollution Research, 2020, 27:12138-12151.
    [32] GALAL T M, AL-SODANY Y M, AL-YASI H M. Phytostabilization as a phytoremediation strategy for mitigating water pollutants by the floating macrophyte Ludwigia stolonifera (Guill.& Perr.) P.H. Raven[J]. International Journal of Phytoremediation, 2020, 22:373-382.
    [33] CHAABANI S, ABDELMALEK-BABBOU C, AHMED H B, et al. Phytoremediation assessment of native plants growing on Pb-Zn mine site in Northern Tunisia[J]. Environmental Earth Sciences, 2017, 76(16):585.
    [34] HOSSEINNIAEE S, JAFARI M, TAVILI A, et al. Perspectives for phytoremediation capability of native plants growing on Angouran Pb-Zn mining complex in northwest of Iran[J]. Journal of Environmental Management, 2022, 315:115184.
    [35] 吴海霞, 孙萍, 卢爽, 等. 浒苔生物炭促进土壤Pb固定并缓解植物Pb毒性[J]. 中国环境科学, 2020, 40(8):3530-3538.
    [36] 张成丽, 钱静, 张伟平, 等. 观赏性植物对土壤重金属的修复效果及其环境效应分析:以开封市菊花为例[J]. 环境化学, 2020,39(7):1883-1893.
    [37] GUPTA D K, HUANG H G, CORPAS F J. Lead tolerance in plants:Strategies for phytoremediation. Environmental Science Pollution Research, 2013, 20, 2150-2161.
    [38] GONALVES A C, SCHWANTES D, SOUSA R, et al. Phytoremediation capacity, growth and physiological responses of Crambe abyssinica Hochst on soil contaminated with Cd and Pb[J]. Journal of Environmental Management, 2020, 262:110342.
    [39] LIU D, LI S, ISLAM E, et al. Lead accumulation and tolerance of Moso bamboo (Phyllostachys pubescens) seedlings:applications of phytoremediation[J]. Journal of Zhejiang University-Science B, 2015, 16:123-130.
    [40] 张敬东, 王思宏, 李东浩. 茵陈蒿叶的金属元素研究[J]. 食品工业, 2015, 36(7):282-285.
    [41] 赵淑玲, 何九军, 王一峰,等. 车前对重金属污染土壤修复应用技术[J]. 农业技术与装备, 2021(1):106-107.
    [42] SALAWU M O, SUNDAY E T, OLOYEDE H O B. Bioaccumulative activity of Ludwigia peploides on heavy metals-contaminated water[J]. Environmental Technology & Innovation, 2018, 10:324-334.
    [43] CHIOTI V, ZERVOUDAKIS G. Is root catalase a bifunctional catalase-peroxidase?[J]. Antioxidants, 2017, 6(2):39-44.
    [44] 罗明霞, 胡宗达, 刘兴良, 等. 川西亚高山不同林龄紫果云杉人工林土壤微生物生物量及酶活性[J].生态学报, 2021, 41(14):5632-5642.
    [45] ZHAN J, LI T X, ZHANG X Z, et al. Rhizosphere characteristics of phytostabilizer Athyrium wardii (Hook.) involved in Cd and Pb accumulation[J]. Ecotoxicology and Environmental Safety, 2018, 148:892-900.
    [46] YANG W H, LI P, RENSING C, et al. Changes in metal availability and improvements in microbial properties after phytoextraction of a Cd, Zn and Pb contaminated soil[J]. Bulletin of Environmental Contamination and Toxicology, 2018, 101(5):624-630.
    [47] 郭华, 陈俊任, 钟斌, 等. 毛竹根际与非根际土壤重金属、理化性质及酶活性特征[J]. 生态学报, 2017, 37(18):6149-6156.
    [48] 邱静, 吴永贵, 罗有发, 等. 两种先锋植物对铅锌废渣生境改善及重金属迁移的影响[J]. 农业环境科学学报, 2019,38(4):798-806.
  • 加载中
计量
  • 文章访问数:  133
  • HTML全文浏览量:  37
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-10
  • 网络出版日期:  2023-03-24

目录

    /

    返回文章
    返回