INTERFERENCE OF REMEDIATION AGENTS TO SOIL Cr(Ⅵ) DETERMINATION BY ALKALINE DIGESTION-FLAME ATOMIC ABSORPTION SPECTROMETRY
-
摘要: 生态环境部发布的HJ 1082—2019《土壤和沉积物六价铬的测定碱溶液提取-火焰原子吸收分光光度法》于2020年6月正式实施,是目前国内唯一的法定土壤和沉积物Cr (Ⅵ)测定方法。然而现有研究发现,修复后的Cr (Ⅵ)污染土壤测定结果存在假阳性或负偏差的问题。针对其中与溶解性Cr (Ⅲ)、淋洗剂(柠檬酸盐)和还原剂(FeSO4、Na2S2O5、Na2S和CaSx)相关的问题进行研究,结果表明:修复过程中产生的Cr (Ⅲ)在整个修复和检测过程中均处于过饱和状态,导致检测结果出现较小正偏差,存在误判风险。土壤对Cr (Ⅲ)的吸附作用对降低检测正偏差至测定下限以下起着至关重要的作用。柠檬酸盐能显著促进Cr (Ⅲ)溶解,可能导致正偏差。修复后土壤中残留的大量还原剂会在碱消解或pH调节过程中将提取的Cr (Ⅵ)还原为Cr (Ⅲ),导致显著的负偏差。火焰原子吸收分光光度法(FAAS)检测的正偏差程度较小且存在较大不确定性,不能抵消残留还原剂产生的负偏差。Abstract: As the only legal method for the determination of hexavalent chromium[Cr(Ⅵ)] in soils and sediments, alkaline digestion/flame atomic absorption spectrometry (specified in China's national standard, HJ 1082-2019) was implemented in China in June 2020. However, false positive and negative deviation were reported by some researchers and engineering projects for Cr(Ⅵ)-contaminated soils. The positive and negative biases caused by dissolved Cr(Ⅲ), flushing agent (citrate) and reductants (FeSO4, Na2S2O5, Na2S and CaSx) were investigated in this study. Experimental results showed that Cr(Ⅲ) produced during remediation was supersaturated over the remediation and determination process, resulting in small positive biases which may cause erroneous judgment. The adsorption effect of soil to the Cr(Ⅲ) played a crucial role in mitigating the positive bias to below the determination limit. Citrate could significantly enhance the dissolution of Cr(Ⅲ) to a level resulting in positive bias. When a large number of residual reductants remained in soils after remediation, they could reduce the extracted Cr(Ⅵ) into Cr(Ⅲ) during alkaline digestion or pH adjustment, resulting in significant negative bias. This negative bias couldn't be offset by the positive bias of FAAS, due to the uncertainty and small amplitude of the positive biases.
-
Key words:
- HJ 1082 /
- HJ 687 /
- chromium contaminated soil /
- remediation /
- citrate
-
[1] SZULCZEWSKI M D, HELMKE P A, BLEAM W F. Comparison of XANES analyses and extractions to determine chromium speciation in contaminated soils[J]. Environmental Science & Technology, 1997, 31(10):2954-2959. [2] MALHERBE J, ISAURE M P, SEBY F, et al. Evaluation of hexavalent chromium extraction method EPA Method 3060a for soils using XANES spectroscopy[J]. Environmental Science & Technology, 2011, 45(24):10492-10500. [3] JAMES B R, PETURA J C, VITALE R J, et al. Hexavalent chromium extraction from soils:a comparison of five methods[J]. Environmental Science & Technology, 1995, 29(9):2377-2381. [4] MILLS C T, BERN C R, WOLF R E, et al. Modifications to EPA Method 3060a to improve extraction of Cr(Ⅵ) from chromium ore processing residue-contaminated soils[J]. Environmental Science & Technology, 2017, 51(19):11235. [5] 中华人民共和国生态环境部. 固体废物六价铬的测定碱消解/火焰原子吸收分光光度法(发布稿):HJ 687-2014[S]. 北京; 中国环境科学出版社. 2014. [6] EPA. Method 3060a:Alkaline digestion for hexavalent chromium[S]. Washington, DC:U.S.EPA, 1996. [7] EPA. Method 7196a:Chromium, hexavalent (colorimetric)[S]. Washington, DC:U.S.EPA, 1992. [8] EPA. Method 7199:Determination of hexavalent chromium in drinking water, groundwater and industrial wastewater effluents by ion chromatography[S]. Washington, DC:U.S.EPA, 1996. [9] STANDARD E. 碱溶液提取法提取土壤和固废中六价铬的离子色谱法(DIN EN 15192-2007)[S]. European Standard. 2007. [10] 中华人民共和国生态环境部. 土壤和沉积物12种金属元素的测定王水提取-电感耦合等离子体质谱法:HJ 803-2016[S]. 北京:中国环境科学出版社. 2016. [11] 中华人民共和国生态环境部. 土壤和沉积物六价铬的测定碱溶液提取-火焰原子吸收分光光度法:HJ 1082-2019[S]. 北京:中国环境出版集团. 2019. [12] RAI D, SASS B M, MOORE D A. Chromium(Ⅲ) hydrolysis constants and solubility of chromium(Ⅲ) hydroxide[J]. Inorganic Chemistry, 1987, 26(3):345-349. [13] RAI D, HESS N J, RAO L F, et al. Thermodynamic model for the solubility of Cr(OH)3(am) in concentrated NaOH and NaOH-NaNO3 solutions[J]. Journal of Solution Chemistry, 2002, 31(5):343-367. [14] 中华人民共和国生态环境部. 《土壤和沉积物六价铬的测定碱溶液提取-火焰原子吸收分光光度法(征求意见稿)》编制说明.[2018-12-03]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/201812/W020181211554962613024.pdf[M]. [15] YANG Z H, ZHANG X M, JIANG Z, et al. Reductive materials for remediation of hexavalent chromium contaminated soil:a review[J]. Science of the Total Environment, 2021, 773:145654. [16] 肖明波,黄卓尔,周树杰,等. 火焰原子吸收法测定高色度含铬废水中的六价铬[J]. 广州环境科学, 2008(3):37-39. [17] 林大泉,陈季英. 原子吸收分光光度法分别测定水中的三价铬和六价铬[J]. 分析化学, 1982,10(1):36-39. [18] 陶美彤. 高浓度铬污染土壤淋洗修复效果及影响因素的研究[D]. 长春:吉林大学, 2019. [19] 徐雷, 代惠萍, 魏树和. 淋洗剂在重金属污染土壤修复中的研究进展[J]. 中国环境科学, 2021, 41(11):5237-5244. [20] 李丹丹,郝秀珍,周东美,等. 淋洗法修复铬渣污染场地实验研究[J]. 农业环境科学学报, 2011, 30(12):2451-2457. [21] HU S Y, LI D, MAN Y D, et al. Evaluation of remediation of Cr(Ⅵ)-contaminated soils by calcium polysulfide:long-term stabilization and mechanism studies[J]. Science of the Total Environment, 2021, 790:148140. [22] HU S Y, LI D, QIN S Q, et al. Interference of sulfide with iron ions to the analysis of Cr(Ⅵ) by Method 3060a & Method 7196a[J]. Journal of Hazardous Materials, 2020, 398:122837. [23] TARTAR H V, BRADLEY C E. On the composition of lime-sulphur spray[J]. Journal of Industrial & Engineering Chemistry, 1910, 2(6):271-277. [24] 中华人民共和国生态环境部. 水质六价铬的测定二苯碳酰二肼分光光度法:GB 7467-87[S]. 1987. [25] PAPASSIOPI N, VAXEVANIDOU K, CHRISTOU C, et al. Synthesis, characterization and stability of Cr(Ⅲ) and Fe(Ⅲ) hydroxides[J]. Journal of Hazardous Materials, 2014, 264:490-497. [26] DAI C, ZUO X B, CAO B, et al. Homogeneous and heterogeneous (Fe-x, Cr1-x)(OH)3 precipitation:implications for Cr sequestration[J]. Environmental Science & Technology, 2016, 50(4):1741-1749. [27] ARATANI T, YAHIKOZAWA K, MATOBA H, et al. Conditions for the precipitation of heavy metals from wastewater by the lime sulfurated solution (calcium polysulfide) process[J]. Bulletin of the Chemical Society of Japan, 1978, 51(6):1755-1760. [28] SASS B M, RAI D. Solubility of amorphous chromium(Ⅲ)-iron(Ⅲ) hydroxide solid-solutions[J]. Inorganic Chemistry, 1987, 26(14):2228-2232. [29] RAI D, SASS B M, MOORE D A. Chromium(Ⅲ) hydrolysis constants and solubility of chromium(Ⅲ) hydroxide[J]. Cheminform, 1987, 26(3):345-349. [30] TAVANI E L, VOLZONE C. Adsorption of chromium(Ⅲ) from a tanning wastewater on kaolinite[J]. Journal of the Society of Leather Technologists and Chemists, 1997, 81(4):143-148. [31] GRIFFIN R A, AU A K, FROST R R. Effect of pH on adsorption of chromium from landfill-leachate by clay-minerals[J]. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 1977, 12(8):431-449. [32] GUSTAFSSON J P, PERSSON I, OROMIEH A G, et al. Chromium(Ⅲ) complexation to natural organic matter:mechanisms and modeling[J]. Environmental Science & Technology, 2014, 48(3):1753-1761. [33] 中华人民共和国生态环境部,国家市场监督管理总局. 土壤环境质量建设用地土壤污染风险管控标准(试行):GB 36600-2018[S]. 2018. [34] BARTLETT R, JAMES B. Behavior of chromium in soils.3. Oxidation[J]. Journal of Environmental Quality, 1979, 8(1):31-35. [35] ZATKA V J. Speciation of hexavalent chromium in welding fumes interference by air oxidation of chromium[J]. American Industrial Hygiene Association Journal, 1985, 46(6):327-331. [36] JAMES B R, BARTLETT R J. Behavior of chromium in soils. 6. Interactions between oxidation-reduction and organic complexation[J]. Journal of Environmental Quality, 1983, 12(2):173-176. [37] TOKUNAGA T K, WAN J M, FIRESTONE M K, et al. In situ reduction of chromium(Ⅵ) in heavily contaminated soils through organic carbon amendment[J]. Journal of Environmental Quality, 2003, 32(5):1641-1649. [38] JIANG Y T, YANG F, DAI M, et al. Application of microbial immobilization technology for remediation of Cr(Ⅵ) contamination:a review[J]. Chemosphere, 2021(2):131721. [39] FU L J, FENG A X, XIAO J J, et al. Remediation of soil contaminated with high levels of hexavalent chromium by combined chemical-microbial reduction and stabilization[J]. Journal of Hazardous Materials, 2021, 403:123847. [40] LEITA L, MARGON A, SINICCO T, et al. Glucose promotes the reduction of hexavalent chromium in soil[J]. Geoderma, 2011, 164(3/4):122-127. [41] QU M M, CHEN J M, HUANG Q Q, et al. Bioremediation of hexavalent chromium contaminated soil by a bioleaching system with weak magnetic fields[J]. International Biodeterioration & Biodegradation, 2018, 128:41-47. [42] HOU S Y, WU B, PENG D H, et al. Remediation performance and mechanism of hexavalent chromium in alkaline soil using multi-layer loaded nano-zero-valent iron[J]. Environmental Pollution, 2019, 252:553-561. [43] de SA I P, de SOUZA G B, NOGUEIRA A R D. Chromium speciation in organic fertilizer by cloud point extraction and optimization through experimental Doehlert design as support for legislative aspects[J]. Microchemical Journal, 2021, 160:105618. [44] PUZON G J, ROBERTS A G, KRAMER D M, et al. Formation of soluble organo-chromium(Ⅲ) complexes after chromate reduction in the presence of cellular organics[J]. Environmental Science & Technology, 2005, 39(8):2811-2817. [45] MIDDLETON S S, BENCHEIKH-LATMANI R, MACKEY M R, et al. Cometabolism of Cr(Ⅵ) by Shewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth[J]. Biotechnology and Bioengineering, 2003, 83(6):627-637.
点击查看大图
计量
- 文章访问数: 108
- HTML全文浏览量: 27
- PDF下载量: 1
- 被引次数: 0